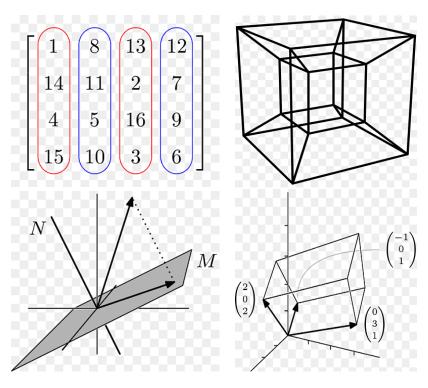


UNIVERSIDADE FEDERAL DE ALAGOAS CAMPUS DE ENGENHARIAS E CIÊNCIAS AGRÁRIAS



https://www.pngwing.com/pt/free-png-xxiky

Introdução à Álgebra Linear

e suas aplicações

Parte 1: Introdução; Matrizes;
Determinantes; Sistemas de
Equações Lineares; Autovalores e
Autovetores

Apresentação

- > O PROFESSOR;
- > Os ALUNOS;
- > A DISCIPLINA;

Os Alunos

- Nome; Idade;
- Cidade; Escola;
- ➤ Por que escolheu o curso?
- Como está o curso até então?
- > Dificuldades encontradas.

Informações gerais:

Ano/Semestre: 2024.2

Disciplina: Álgebra Linear

Segunda/Terça Horário:

14h50 - 16h30

Natureza: Obrigatória 2º Período

aula/semana: 04 (quatro) aula/total: 72h

Docente: Alverlando Ricardo E-mail: alverlando.ricardo@delmiro.ufal.br

- Plano de curso;
- http://www.ufal.edu.br/estudante/graduacao/normas
- https://alverlandoricardo.wixsite.com/professor

Objetivo Geral:

Desenvolver a capacidade de compreender os conceitos fundamentais de Álgebra Linear, aplicando-os na resolução de problemas teóricos e práticos em diversas áreas da engenharia.

Objetivos específicos:

- 1) Resolver sistemas de equações lineares e interpretar seus resultados;
- 2) Calcular Autovalores e Autovetores e interpretar suas aplicações;
- 3) Compreender e aplicar conceitos de espaços vetoriais e suas propriedades;
- 4) Utilizar os espaços vetoriais euclidianos em contextos geométricos e analíticos;
- 5) Aplicar transformações lineares e compreender suas representações matriciais;
- 6) Analisar formas quadráticas em problemas geométricos e físicos.

EMENTA:

- Matrizes e Determinantes;
- Sistemas de Equações Lineares;
- Autovalores e autovetores (Vetores Próprios e Valores Próprios);
- Espaços Vetoriais;
- Espaços Vetoriais Euclidianos;
- Transformações Lineares;
- > Formas Quadráticas.

Parte 1

Parte 2

Parte 3

Conteúdo Programático (Especificações/cronograma)

Unidades	Aula	Conteúdo	
AULA 1	27/01	PARTE I: Introdução, Revisão de Matrizes e Determinantes	
AULA 2	03/02	PARTE I: Exercícios sobre matrizes e determinantes	
AULA 3	10/02	PARTE I: Sistemas de equações lineares	03
AULA 4	17/02	PARTE I: Autovalores e Autovetores	03
AULA 5	24/02	PARTE I: Exercícios	03
Sem aula	03/03	Semana do Carnaval	
PROVA 1	10/03	1ª Avaliação Parcial - Escrita	03
AULA 6	17/03	PARTE II: Espaços Vetoriais	03
AULA 7	24/03	PARTE II: Espaços Vetoriais Euclidianos	03
AULA 8	31/03	PARTE II: Exercícios	03
PROVA 2	07/04	2ª Avaliação Parcial - Escrita	03
AULA 9	14/04	PARTE III: Transformações Lineares	03
Sem aula	21/04	Feriado do dia de tiradentes	
AULA 10	28/05	PARTE III: Formas Quadráticas.	03
AULA 11	05/05	PARTE III: Exercícios	03
PROVA 3	12/05	3ª Avaliação Parcial - Escrita	03
Reavaliação	19/05	REAVALIAÇÃO	03
FINAL	26/05	FINAL	03

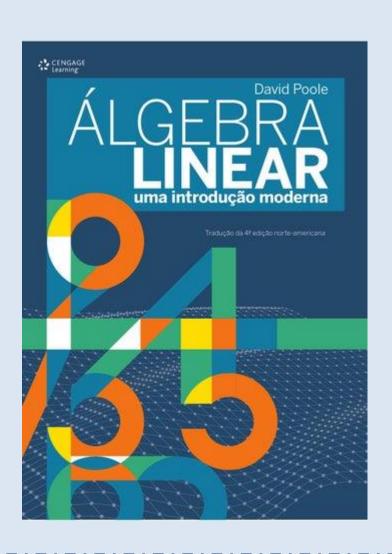
Métodos de Ensino

- Atividades Teóricas: notas de aula + livros didáticos recomendados + PROVA (segunda ou terça-feira).
- Atividades Práticas: resolução de problemas clássicos que aplicam as teorias apresentadas (segunda ou terça-feira).

Avaliação	Tipo	Aulas
1ª Prova Teórica	Sem Consulta	Parte 1
2ª Prova Teórica	Sem Consulta	Parte 2
3ª Prova Teórica	Sem Consulta	Parte 3
Reavaliação	Sem Consulta	*duas menores notas
Prova Final	Sem Consulta	Parte 1 a 3

Normas Acadêmicas da UFAL: http://www.ufal.edu.br/estudante/graduacao/normas

REFERENCIAS BÁSICAS

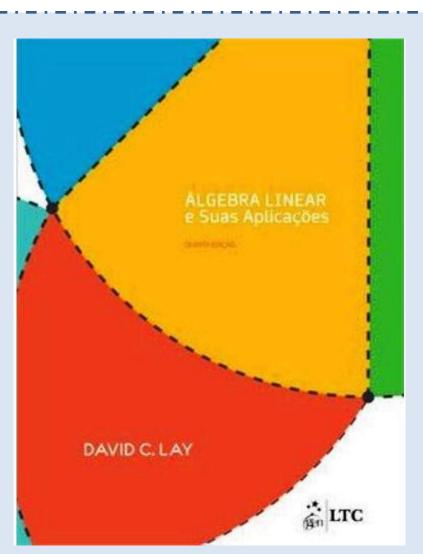


Álgebra Linear: uma introdução moderna

David Poole

ISBN-10. 852212390X; ISBN-13. 978-8522123902; Edição. 4ª; Editora. Cengage Learning.

REFERENCIAS BÁSICAS

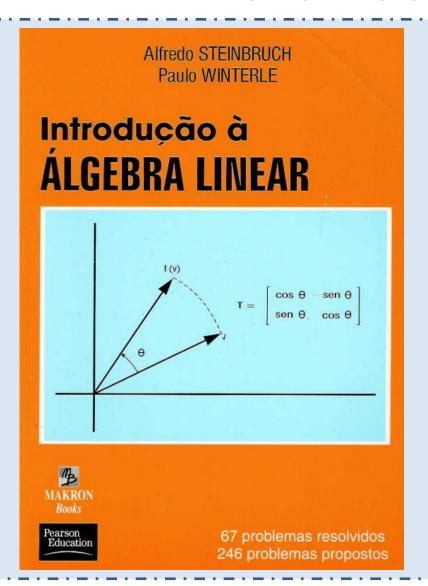


Álgebra Linear e Suas Aplicações

David Lay

ISBN-10, 8521622090. ISBN-13, 978-8521622093

REFERENCIAS BÁSICAS



Introdução a Álgebra Linear

Alfredo Steinbruch e Paulo Winterle

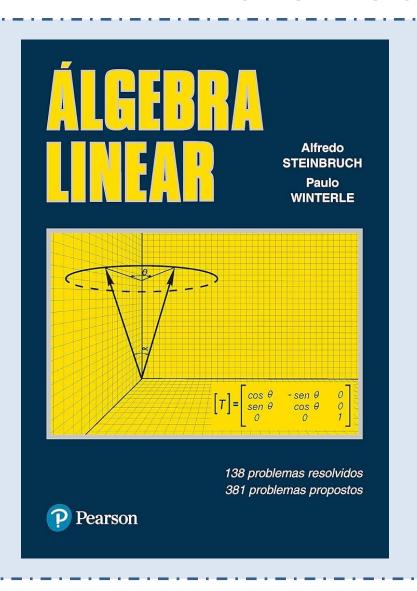
Editora: Pearson Universidades; 1º edição (12 junho 1995)

Idioma: Português

ISBN-10: 0074609440

ISBN-13: 978-0074609446

REFERENCIAS BÁSICAS



Álgebra Linear

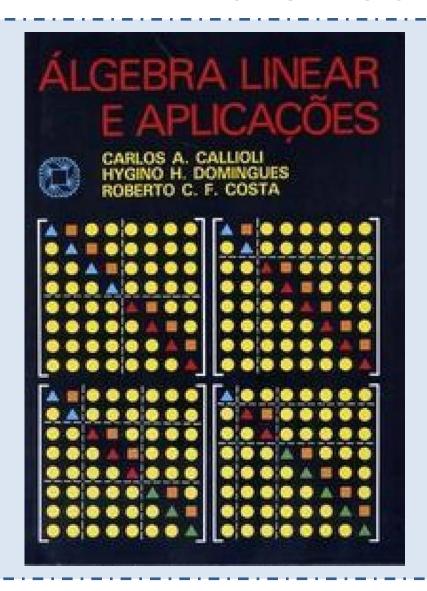
Alfredo Steinbruch e Paulo Winterle

Editora: Pearson Universidades; 1ª edição (12 junho 1995)

Idioma: Português ISBN-100074504126

ISBN-13978-0074504123

REFERENCIAS BÁSICAS



Álgebra Linear e Aplicações

Carloe A. Callioli; Hygino H. Domingues e Roberto C. F. Costa

Edição: 6

Ano: 1990

Formatos Comercializados: Livro físico,

PDF (download), MOBI, EPUB

> REFERÊNCIAS COMPLEMENTARES

Básica:

POOLE, D. Álgebra Linear. 1ª ed. São Paulo: Cengage Learning, 2015.

LAY, D. C. Álgebra Linear e suas Aplicações. 4ª ed. São Paulo: LTC, 2013.

ANTON, H., RORRES, C. Álgebra Linear com Aplicações. 10^a ed. Porto Alegre: Bookman, 2012.

Complementar:

STEINBRUCH, A.; WINTERLE, P. Álgebra Linear. 2ª ed. São Paulo: Pearson, 1995.

KOLMAN, B.; HILL, D. R. Introdução à álgebra linear com aplicações. Rio de Janeiro: LTC, 2014.

BOLDRINI, J. L.; et al. Álgebra linear. 3ª ed. São Paulo: Harper & Row do Brasil, 1980.

CALLIOLI, C. A.; DOMINGUES, H. H.; COSTA, R. C. F. Álgebra linear e aplicações. 6ª ed. São Paulo: Atual, 1990.

LIMA, E. L. Geometria analítica e álgebra linear. 2ª ed. São Paulo: IMPA, 2012

ATENÇÃO!

KEEP

BECAUSE

RAPADURA É DOCE MAS NÃO É MOLE NÃO

NUNCA DESISTA

LUTE!

MOTIVAÇÃO!

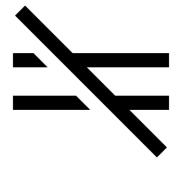
Melhor do Mundo: 5 Vezes

Melhor do Mundo: 8 Vezes

2008, 2013, 2014, 2016 e 2017

2009, 2010, 2011, 2012, 2015, 2019, 2021 e 2023

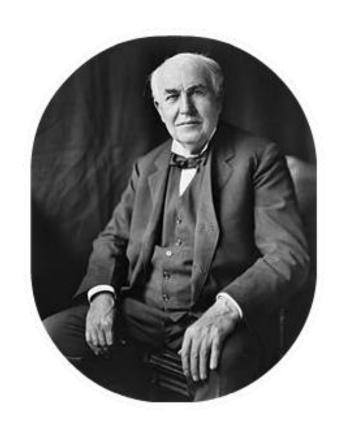
MOTIVAÇÃO!



TÉCNICA

HABILIDADE

MOTIVAÇÃO!



Thomas Edison

"Eu nunca fiz algo que valesse a pena por acidente, nem nenhuma das minhas invenções aconteceram por acidente; elas vieram pelo trabalho."

"A genialidade é 1% inspiração e 99% transpiração"

1. Matrizes e Determinantes

Matrizes e Determinantes

A história do uso de matrizes e determinantes está intrinsecamente ligada à necessidade de resolver problemas práticos em diferentes áreas, como a engenharia, a física e a economia.

Matrizes e Determinantes

A história do uso de matrizes está intrinsecamente ligada à necessidade de resolver problemas práticos em diferentes áreas, como a engenharia, a física e a economia.

Origem e Desenvolvimento Inicial

1. China Antiga (200 a.C.)

O uso de tabelas numéricas para resolver sistemas de equações lineares aparece no livro "Os Nove Capítulos sobre a Arte da Matemática" (*Jiuzhang Suanshu*), por volta de 200 a.C. Esse texto descrevia métodos semelhantes à eliminação de Gauss, uma técnica moderna para resolver sistemas lineares.

2. Determinantes e Matriz Implícita (Século XVII)

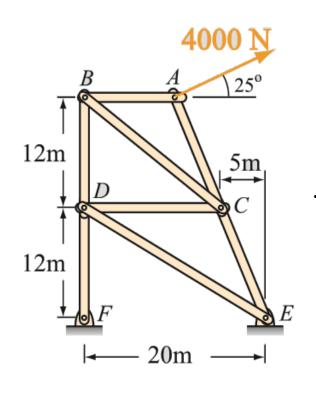
O conceito de **determinante** foi introduzido antes mesmo da noção de matriz formal. O matemático japonês **Seki Takakazu** e, de forma independente, o alemão **Gottfried Wilhelm Leibniz** estudaram determinantes no final do século XVII para resolver sistemas lineares.

Matrizes e Determinantes

- A história do uso de matrizes está intrinsecamente ligada à necessidade de resolver problemas práticos em diferentes áreas, como a engenharia, a física e a economia.
- •1850: James Joseph Sylvester cunhou o termo "matriz".
- •1858: Arthur Cayley formalizou a álgebra das matrizes.
- •Século XIX: Jacobi e Fourier estudaram autovalores e autovetores.
- •1925: Werner Heisenberg aplicou matrizes na mecânica quântica.
- •Século XX: Avanços computacionais ampliaram seu uso em simulações e economia.
- •Atualmente: Matrizes são fundamentais em inteligência artificial, engenharia e economia, processamento de imagens, métodos de elementos finitos.

EX. DE APLICAÇÕES NA ENGENHARIA

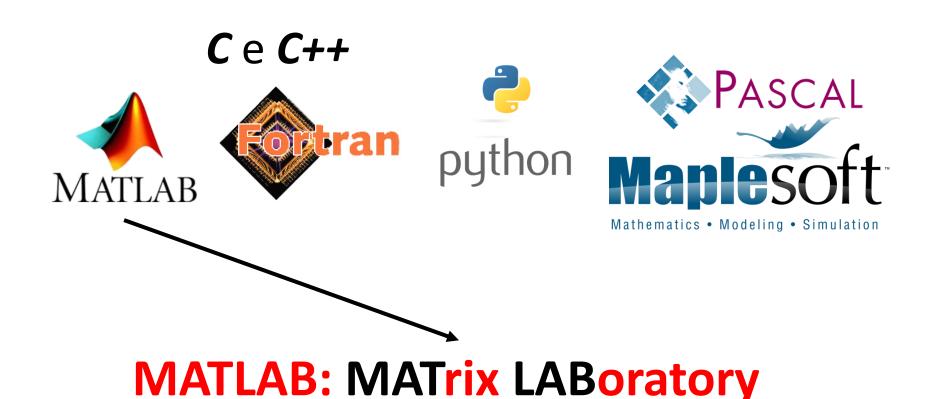
Engenharia Civil/Produção: cálculo da força nos membros de uma treliça:



$$\begin{split} & 0.9231 F_{AC} = 1690 \\ & F_{AB} - 0.7809 F_{BC} = 0 \\ & F_{CD} + 0.8575 F_{DE} = 0 \\ & 0.3846 F_{CE} - 0.3846 F_{AC} - 0.7809 F_{BC} - F_{CD} = 0 \\ & 0.9231 F_{AC} + 0.6247 F_{BC} - 0.9231 F_{CE} = 0 \\ & - F_{AB} - 0.3846 F_{AC} = 3625 \\ & 0.6247 F_{BC} - F_{BD} = 0 \\ & F_{BD} - 0.5145 F_{DE} - F_{DF} = 0 \end{split}$$

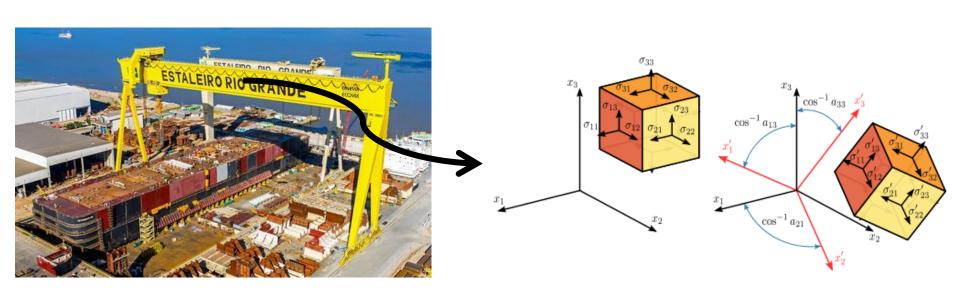
EX. DE APLICAÇÕES NA ENGENHARIA

Altamente aplicável nas LINGUAGENS
 COMPUTACIONAIS para elaboração de algoritmos.



EX. DE APLICAÇÕES NA ENGENHARIA

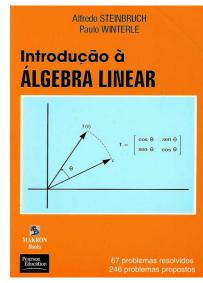
Na mecânica dos materiais, os esforços principais são os **autovalores** da matriz de tensões, e as direções principais são as direções dos **autovetores** associados.



1.1 Conceitos Básicos – Matrizes e Determinantes (REVISÃO)

Este tópico NÃO é um curso sobre Matrizes e Determinantes. Aqui serão tratados somente os itens necessários à compreensão dos assuntos!

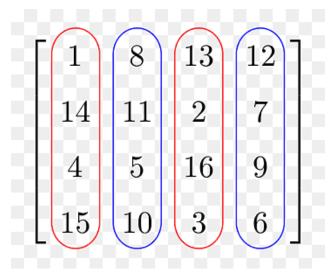
Maiores informações podem ser encontradas nas referências.



Aqui usaremos:

Matrizes (REVISÃO)

As Matrizes são representadas na forma de tabelas que correspondem a união de números reais ou complexos, organizados em linhas e colunas.



> Definições:

Definição 1.1. Sejam $m \ge 1$ e $n \ge 1$ dois números inteiros. Uma matriz $m \times n$ é um agrupamento retangular de números com m linhas e n colunas, formando uma tabela que se indica do seguinte modo:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} . \tag{1.1}$$

Notações: Indicaremos por A uma matriz $m \times n$ com i = 1, ..., m e j = 1, ..., n. O elemento que ocupa a linha i e a coluna j da matriz A é denotado por (a_{ij}) .

Definições:

Definição 1.3. (Igualdade de Matrizes). Duas matrizes $A = (a_{ij})$ e $B = (b_{ij})$, de ordem $m \times n$ são iguais se, e somente se, $a_{ij} = b_{ij}$ (i=1,2,...,m; j=1,2,...,n), para todo par (i,j) em que i=1,...,m e j=1,...,n.

Exemplo 1.4.
$$\begin{bmatrix} 5 & 6 \\ x & y \end{bmatrix} = \begin{bmatrix} z & t \\ 1 & 2 \end{bmatrix} \iff \begin{cases} x = 1 \\ y = 2 \\ z = 5 \\ t = 6 \end{cases}$$

Exemplo 1.5.
$$\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \neq \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}.$$

Definições:

Definição 1.6. (Matriz linha). Uma matriz que possui apenas uma linha, ou seja, uma matriz de ordem $1 \times n$:

$$M_{1\times n} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \end{bmatrix},$$

é chamada de matriz linha.

Definição 1.7. (Matriz coluna). Uma matriz que possui apenas uma coluna, ou seja, uma matriz de ordem $m \times 1$:

$$M_{m \times 1} = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{m1} \end{bmatrix}$$

é chamada de matriz coluna.

> Definições:

Definição 1.8. (Matriz quadrada). Uma matriz que tem o mesmo número de linhas e colunas é chamada de matriz quadrada. Usaremos a notação M_n e a chamaremos de matriz quadrada de ordem n:

$$M_n = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.$$

Definição 1.9. (Diagonal principal). Seja $A = (a_{ij})$ uma matriz quadrada $n \times n$. Os elementos a_{ij} em que i = j, com i, j = 1, ..., n são os elementos da diagonal principal.

> Definições:

A.2 - Diagonal principal e diagonal secundária - Numa matriz quadrada A, de ordem <math>n = 3, por exemplo:

$$\mathbf{A}_{3} = \mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} \end{bmatrix},$$

os elementos a_{ij} em que i = j constituem a diagonal principal: a_{11} a_{22} a_{33} ; os elementos a_{ij} em que i + j = n + 1 = 3 + 1 constituem a diagonal secundária: a_{13} a_{22} a_{31} .

Definições:

Definição 1.10. (Matriz triangular superior). Uma matriz quadrada, em que os elementos abaixo da diagonal principal são nulos, ou seja, os elementos a_{ij} em que, i > j, são nulos:

$$M_n = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix},$$

é chamada de matriz triangular superior.

Definição 1.11. (Matriz triangular inferior). Uma matriz quadrada, em que os elementos acima da diagonal principal são nulos, ou seja, os elementos a_{ij} em que, i < j, são nulos:

$$M_n = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix},$$

é chamada de matriz triangular inferior.

Definições:

Definição 1.12. (Matriz Diagonal). Uma matriz quadrada, em que os elementos acima e abaixo da diagonal principal são nulos:

$$M_n = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix},$$

é chamada de matriz diagonal.

Definição 1.13. (Matriz identidade). A matriz identidade é denotada por I_n , onde n é a sua ordem, e é uma matriz quadrada (a_{ij}) em que os elementos a_{ij} da diagonal principal (i = j) são iguais a 1 e os elementos a_{ij} com $i \neq j$ são iguais a 0, com i, j = 1, ..., n:

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}.$$

> Definições:

Definição 1.15. (Matriz nula). Uma matriz em que todos os elementos são iguais a zero:

$$O_{m \times n} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix},$$

é chamada de matriz nula.

A.4 — Matriz zero é a matriz cujos elementos são todos nulos. Indicase a matriz zero por 0:

$$0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}; \qquad 0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Operações com Matrizes:

Definição 1.18. (Matriz oposta). Dada uma matriz $A = (a_{ij})$, a matriz $B = (b_{ij})$, em que $b_{ij} = -a_{ij}$ ($1 \le i \le m, 1 \le j \le n$), é chamada oposta de A, e indicamos por A.

$$A = \begin{bmatrix} 4 & 1 \\ -3 & 8 \end{bmatrix}; \quad -A = \begin{bmatrix} -4 & -1 \\ 3 & -8 \end{bmatrix}$$

Definição 1.19. A diferença entre a matriz A e a matriz B, indicada por A - B é a soma de A com B (A + (-B)).

$$\begin{bmatrix} 4 & -1 \\ -3 & 9 \end{bmatrix} - \begin{bmatrix} 5 & -6 \\ 7 & -8 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ -3 & 9 \end{bmatrix} + \begin{bmatrix} -5 & 6 \\ -7 & 8 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ -10 & 17 \end{bmatrix}$$

Operações com Matrizes:

1.3.1 Adição

Dadas as matrizes $A = (a_{ij}) \in M_{m \times n}$ e $B = (b_{ij}) \in M_{m \times n}$ chamamos de soma da matriz A com a matriz B e indicamos por A + B, a matriz $m \times n$, cujo termo geral é $a_{ij} + b_{ij}$, ou seja:

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{bmatrix}.$$

$$(1.3)$$

Exemplo 1.16. Se
$$A = \begin{bmatrix} -1 & 2 \\ 7 & 0 \end{bmatrix}$$
 e $B = \begin{bmatrix} 8 & 11 \\ -3 & 5 \end{bmatrix}$ então $A + B = \begin{bmatrix} 7 & 13 \\ 4 & 5 \end{bmatrix}$.

Exemplo 1.17.
$$\begin{bmatrix} a & b & c \\ m & n+1 & p \\ x & y & z \end{bmatrix} + \begin{bmatrix} 1-a & -b & -c \\ -m & -n & -p \\ -x & -y & -z+1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} .$$

Operações com Matrizes:

A.8.2 — Propriedades da adição de matrizes — Para as matrizes A, B e C, de mesma ordem, tem-se:

I)
$$A + (B + C) = (A + B) + C$$

II)
$$A + B = B + A$$

III)
$$A + 0 = 0 + A = A$$

IV)
$$A + (-A) = -A + A = 0$$

Operações com Matrizes:

A.9 – Produto de uma matriz por um escalar – Se λ é um escalar, o produto de uma matriz $A = [a_{ij}]$ por esse escalar é uma matriz $B = [b_{ij}]$ tal que $b_{ij} = \lambda a_{ij}$.

$$5 \times \begin{bmatrix} 4 & -2 & 1 \\ 3 & 5 & -3 \end{bmatrix} = \begin{bmatrix} 5 \times 4 & 5 \times (-2) & 5 \times 1 \\ 5 \times 3 & 5 \times 5 & 5 \times (-3) \end{bmatrix} = \begin{bmatrix} 20 & -10 & 5 \\ 15 & 25 & -15 \end{bmatrix}$$

A.9.1 - Propriedades da multiplicação de uma matriz por um escalar

I)
$$(\alpha\beta) A = \alpha(\beta A), \alpha, \beta \in \mathbb{R}$$

II)
$$(\alpha + \beta) A = \alpha A + \beta A$$

III)
$$\alpha (A + B) = \alpha A + \alpha B$$

IV)
$$1A = A$$

Operações com Matrizes:

1.3.3 Multiplicação de Matrizes

Definição 1.24. Sejam $A = (a_{ij})$ de ordem $m \times n$ e $B = (b_{jk})$ de ordem $n \times p$. Chama-se produto de A por B (indica-se AB) a matriz $C = (c_{ik})$ de ordem $m \times p$, onde

$$c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}.$$

$$A = \begin{bmatrix} 2 & 4 & 3 \end{bmatrix} \quad e \quad B = \begin{bmatrix} 6 \\ 7 \\ 5 \end{bmatrix}$$

O produto AB é, por definição, uma matriz C(1,1) tal que

$$c_{11} = 2 \times 6 + 4 \times 7 + 3 \times 5 = 12 + 28 + 15 = 55,$$

Operações com Matrizes:

O produto **A.B** entre duas matrizes só é possível se o número de colunas da matriz **A** for igual ao número de linhas da matriz **B**. A ordem da matriz resultante **C** será definida pelo número de linhas de **A** e pelo número de colunas de **B**.

$$A_{(1,3)} \times B_{(3,1)} = C_{(1,1)}$$

$$A_{(2, 3)} \times B_{(3, 4)} = C_{(2, 4)}$$

Operações com Matrizes:

A.10.3 — Propriedades da multiplicação de uma matriz por outra Admitindo que as ordens das matrizes possibilitem as operações, tem-se:

I)
$$(AB)C = A(BC)$$

II)
$$(A + B)C = AC + BC$$

III)
$$C(A + B) = CA + CB$$

IV)
$$(\alpha A)B = A(\alpha B) = \alpha(AB), \alpha \in \mathbb{R}$$

• Existem, entretanto, matrizes A e B tais que AB = BA, porém essa não é a regra. Há dois casos que interessam particularmente e um deles é o seguinte: AI = IA = A. Exemplo:

$$\begin{bmatrix} 6 & -3 \\ -2 & 7 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 6 & -3 \\ -2 & 7 \end{bmatrix} = \begin{bmatrix} 6 & -3 \\ -2 & 7 \end{bmatrix}$$

A.11 – Matriz transposta de uma matriz A, de ordem m por n, é a matriz A^t, de ordem n por m, que se obtém escrevendo ordenadamente as linhas de A como colunas. Exemplos:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \quad e \quad A^{t} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix};$$

$$B = \begin{bmatrix} 5 & 1 \\ 3 & 8 \end{bmatrix} \quad e \quad B^{t} = \begin{bmatrix} 5 & 3 \\ 1 & 8 \end{bmatrix}$$

A.11.1 - Propriedades da matriz transposta

$$I) (A + B)^t = A^t + B^t$$

II)
$$(\kappa A)^t = \kappa A^t$$
, $\kappa \in \mathbb{R}$

III)
$$(A^t)^t = A$$

IV) $(AB)^t = B^tA^t$ (ver problemas 15 e 16, itens A.14 e A.14.1)

Operações com Matrizes:

A.12 – Matriz simétrica é uma matriz quadrada S tal que $S^t = S$. Exemplo:

$$S = \begin{bmatrix} 1 & 5 & 9 \\ 5 & 3 & 8 \\ 9 & 8 & 7 \end{bmatrix}; \quad S^{t} = \begin{bmatrix} 1 & 5 & 9 \\ 5 & 3 & 8 \\ 9 & 8 & 7 \end{bmatrix} = S$$

A.13 – Matriz anti-simétrica é uma matriz quadrada A tal que $A^t = -A$. Exemplo:

$$A = \begin{bmatrix} 0 & 3 & 4 \\ -3 & 0 & -6 \\ -4 & 6 & 0 \end{bmatrix}; \quad A^{t} = \begin{bmatrix} 0 & -3 & -4 \\ 3 & 0 & 6 \\ 4 & -6 & 0 \end{bmatrix} = -A$$

A.22 — Matriz inversa de uma matriz — Dada uma matriz quadrada A, de ordem n, se existir uma matriz quadrada B, de mesma ordem, que satisfaça à condição

$$AB = BA = I$$
,

diz-se que B é inversa de A e se representa por A-1:

$$AA^{-1} = A^{-1}A = I$$

Quando uma matriz quadrada A tem inversa, diz-se que A é *inversível*. Exemplo: Dadas as matrizes

$$A = \begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix} \quad e \quad B = \begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix},$$

A é inversa de B (ou B é inversa de A). De fato:

$$\begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix} = \begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix} \begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

A.25 — Propriedades da matriz inversa

I)
$$(A + B)^{-1} = A^{-1} + B^{-1}$$

II)
$$(\kappa A)^{-1} = \frac{1}{\kappa} A^{-1}, \kappa \in \mathbb{R} \text{ e } \kappa \neq 0$$

III)
$$(A^{-1})^{-1} = A$$

$$IV) I^{-1} = I$$

V) $(AB)^{-1} = B^{-1}A^{-1}$ (ver problemas 6 e 7, itens A.31 e A.31.1)

Operações com Matrizes:

A.23 — Matriz singular é a matriz quadrada que tem determinante nulo. Exemplo: A matriz

$$A = \begin{bmatrix} 5 & 10 \\ 2 & 4 \end{bmatrix}$$

é singular porque det A = 0. A matriz singular não tem inversa.

A.24 — *Matriz não-singular* é a matriz quadrada cujo determinante é diferente de zero.

As matrizes A e B de A.22 são não singulares porque det $A \neq 0$ e det B $\neq 0$. A matriz não-singular sempre tem inversa.

EXERCÍCIOS

Problemas Teóricos:

Os problemas 7 a 16 se referem às matrizes:

$$A = \begin{bmatrix} 1 & -2 \\ 3 & 1 \\ 7 & -4 \\ 5 & 9 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 3 - 5 & 7 \\ 6 & 2 - 8 & 3 \end{bmatrix} \quad e$$

$$C = \begin{bmatrix} 1 & 7 & 3 & -8 \\ -3 & -1 & -1 & -3 \\ 4 & 1 & 9 & 0 \\ 5 & 3 & 2 & -3 \end{bmatrix}$$

- 7) Calcular AB.
- 8) Calcular BA.
- 9) Calcular BC.
- 10) Calcular CA.
- 11) Calcular (AB)C.
- 12) Calcular A(BC).

EXERCÍCIOS

Problemas Teóricos:

- 13) Determinar a matriz A^t.
- 14) Determinar a matriz Bt.
- 15) Calcular (AB)t.
- 16) Verificar a igualdade $(AB)^t = B^tA^t$.

Os problemas 17 e 18 referem-se à matriz:

$$A = \begin{bmatrix} 2 & 5 & 9 \\ 4 & 7 & 1 \\ 3 & 6 & 2 \end{bmatrix}$$

- 17) Calcular $A + A^t = S$ e verificar se S é simétrica.
- 18) Calcular $A A^t = P$ e verificar se P é anti-simétrica.

EXERCÍCIOS

Respostas dos Problemas Teóricos:

- 7 a 10) Os problemas são resolvidos de modo análogo ao Exemplo do item A.10.
 - 11) Roteiro: 1º) calcular AB = D; 2º) calcular DC.
 - 12) Roteiro: 1°) calcular BC = E; 2°) calcular AE.
- 13 e 14) Os problemas são resolvidos de modo análogo aos Exemplos do item A.11.
 - 15) Roteiro: 1º) calcular AB; 2º) calcular (AB)t.
- 16) Roteiro: 1º) calcular B^t = F; 2º) calcular A^t = G; 3⁰) calcular FG; comparar FG com (AB)^t calculado no problema 15.
 - 17) S é simétrica.
 - 18) P é anti-simétrica.

Determinantes (REVISÃO)

➤ O Determinante de uma matriz é um número associado a ela que indica certas propriedades, como se a matriz é invertível e o volume de transformação linear associado. Ele só é definido para matrizes quadradas (mesmo número de linhas e colunas).

Como calcular o determinante:

Matriz 2x2:

Seja a matriz
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 .

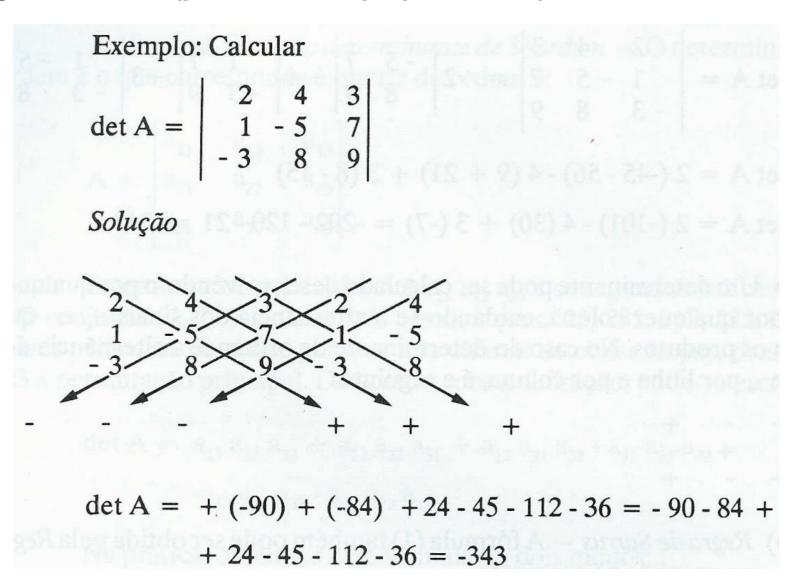
O determinante é dado por:

$$\det(A) = (a \cdot d) - (b \cdot c)$$

2. Regra de Sarrus (para matrizes pequenas 3×3)

Consiste em repetir as duas primeiras colunas ao lado da matriz e somar os produtos das diagonais principais, subtraindo os produtos das diagonais secundárias.

2. Regra de Sarrus (para matrizes pequenas 3×3)



3. Desenvolvimento do Determinante pela 1ª linha (para matrizes 3×3)

$$\det A = + a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

EXEMPLO:

$$\det A = \begin{vmatrix} 2 & 4 & 3 \\ 1 & -5 & 7 \\ -3 & 8 & 9 \end{vmatrix} = +2 \begin{vmatrix} -5 & 7 \\ 8 & 9 \end{vmatrix} - 4 \begin{vmatrix} 1 & 7 \\ -3 & 9 \end{vmatrix} + 3 \begin{vmatrix} 1 & -5 \\ 8 & 9 \end{vmatrix}$$

$$\det A = 2(-45 - 56) - 4(9 + 21) + 3(8 - 15)$$

$$\det A = 2(-101) - 4(30) + 3(-7) = -202 - 120 - 21 = -343$$

\triangleright Cálculo de Determinante de Ordem n > 3:

Para matrizes maiores, usamos o método da expansão por cofatores:

$$\det(A) = \sum_{j=1}^n a_{1j} \cdot C_{1j}$$

Onde a_{1j} são os elementos da 1ª linha e C_{1j} são os cofatores correspondentes.

• Cofator: $C_{ij} = (-1)^{i+j} \cdot \det(M_{ij})$, sendo M_{ij} a matriz obtida removendo a linha i e a coluna j.

 \triangleright Cálculo de Determinante de Ordem n > 3:

Cálculo do Determinante de uma Matriz 4 imes 4

Vamos usar a matriz:

$$A = egin{bmatrix} 1 & 2 & 3 & 4 \ 2 & 4 & 6 & 8 \ 1 & 1 & 1 & 1 \ 3 & 6 & 9 & 12 \end{bmatrix}$$

\triangleright Cálculo de Determinante de Ordem n > 3:

Submatrizes menores:

1. Para $a_{11} = 1$:

Submatriz M_{11} :

$$M_{11} = egin{bmatrix} 4 & 6 & 8 \ 1 & 1 & 1 \ 6 & 9 & 12 \end{bmatrix}.$$

Determinante de M_{11} é calculado como uma matriz 3 imes 3.

2. Para $a_{12} = 2$:

Submatriz M_{12} :

(Remova a primeira linha e segunda coluna.)

Continuar...

- \triangleright Cálculo de Determinante de Ordem n > 3:
- Para matrizes maiores que 4×4, não é viável na prática devido à complexidade computacional! A eliminação gaussiana é muito mais eficiente!

Cálculo de Determinante por Eliminação Gaussiana:

Depois de obter a matriz triangular superior, o determinante é o *produto dos elementos da diagonal principal*.

Vamos aprender nas próximas aulas

Usando o Conceito de Equivalência de Matrizes

Cálculo de Determinante por Eliminação Gaussiana:

A matriz A já é triangular superior:

$$A = egin{bmatrix} 1 & 2 & 3 & 4 & 5 \ 0 & 1 & 2 & 3 & 4 \ 0 & 0 & 1 & 2 & 3 \ 0 & 0 & 0 & 1 & 2 \ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

O determinante é o produto da diagonal principal:

$$\det(A) = 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$$

Equivalência de Matrizes (escreve-se B~A):

Duas matrizes **A** e **B**, de mesma ordem, são equivalentes se for possível transformar **A** em **B** por meio de uma sequência de operações elementares.

Equivalência de Matrizes (escreve-se B~A):

Duas matrizes **A** e **B**, de mesma ordem, são equivalentes se for possível transformar **A** em **B** por meio de uma sequência de operações elementares.

Operações Elementares de uma Matriz:

1) Trocar duas linhas (ou colunas) de lugar.

$$A = \begin{bmatrix} 1 & 3 & 5 \\ 0 & 0 & 2 \\ 0 & 4 & 12 \end{bmatrix} \rightarrow L_{23}: \qquad A_1 = \begin{bmatrix} 1 & 3 & 5 \\ 0 & 4 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

Equivalência de Matrizes (escreve-se B~A):

Duas matrizes **A** e **B**, de mesma ordem, são equivalentes se for possível transformar **A** em **B** por meio de uma sequência de operações elementares.

Operações Elementares de uma Matriz:

2) Multiplicar todos os elementos de uma linha (ou coluna) por um número diferente de zero.

$$A_{1} = \begin{bmatrix} 1 & 3 & 5 \\ 0 & 4 & 12 \\ 0 & 0 & 2 \end{bmatrix} \rightarrow \frac{1}{4}L_{2}; \qquad A_{2} = \begin{bmatrix} 1 & 3 & 5 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix}$$

Equivalência de Matrizes (escreve-se B~A):

Duas matrizes **A** e **B**, de mesma ordem, são equivalentes se for possível transformar **A** em **B** por meio de uma sequência de operações elementares.

Operações Elementares de uma Matriz:

3) Substituir os elementos de uma linha (ou coluna) pela soma deles com os elementos de outra linha (ou coluna), previamente multiplicados por um número não nulo.

$$A_{2} = \begin{bmatrix} 1 & 3 & 5 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix} \rightarrow L_{1} - 3L_{2}: \qquad A_{3} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix}$$

Métodos alternativos: Para matrizes grandes, é comum usar métodos numéricos, com auxilio de um computador (eliminação gaussiana).

➤ O escopo da disciplina é abordar problemas de ordem 2 ou 3.

Equivalência de Matrizes (escreve-se B~A):

- A.29 Inversão de uma matriz por meio de operações elementares A mesma sucessão finita de operações elementares que transformam a matriz quadrada A na matriz unidade I, transforma uma matriz I, de mesma ordem, na matriz A⁻¹, inversa de A. Para determinar, pois, a matriz inversa de A:
- a) coloca-se ao lado da matriz A uma matriz I, separada por um traço vertical;
- b) transforma-se, por meio de operações elementares, a matriz A numa matriz I, aplicando-se, simultaneamente, à matriz I, colocada ao lado de A, as mesmas operações elementares. Exemplo: Determinar a matriz inversa da matriz:

Equivalência de Matrizes (escreve-se B~A):

$$\mathbf{A} = \begin{bmatrix} 1 & -3 & 1 \\ -2 & 3 & -1 \\ -1 & 2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 & 1 & 1 & 0 & 0 \\ -2 & 3 & -1 & 0 & 1 & 0 \\ -1 & 2 & -1 & 0 & 0 & 1 \end{bmatrix} \rightarrow L_2 + 2L_1: \\ -1 & 2 & -1 & 0 & 0 & 1 \end{bmatrix} \rightarrow L_3 + 1L_1:$$

$$\begin{bmatrix} 1 & -3 & 1 & 1 & 0 & 0 \\ 0 & -3 & 1 & 2 & 1 & 0 \\ 0 & -1 & 0 & 1 & 0 & 1 \end{bmatrix} \rightarrow -\frac{1}{3}L_2:$$

$$\begin{bmatrix} 1 & -3 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 1 \end{bmatrix} \rightarrow L_1 + 3L_2:$$

$$\begin{bmatrix} 1 & -3 & 1 & 1 & 0 & 0 \\ 0 & 1 & -\frac{1}{3} & -\frac{2}{3} & -\frac{1}{3} & 0 \\ 0 & -1 & 0 & 1 & 0 & 1 \end{bmatrix} \rightarrow L_3 + 1L_2:$$

Equivalência de Matrizes (escreve-se B~A):

$$\begin{bmatrix} 1 & 0 & 0 & -1 & -1 & 0 \\ 0 & 1 & -\frac{1}{3} & -\frac{2}{3} & -\frac{1}{3} & 0 \\ 0 & 0 & -\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} & 1 \end{bmatrix} \rightarrow -3L_3$$

$$\begin{bmatrix} 1 & 0 & 0 & -1 & -1 & 0 \\ 0 & 1 & -\frac{1}{3} & -\frac{2}{3} & -\frac{1}{3} & 0 \\ 0 & 0 & 1 & -1 & 1 & -3 \end{bmatrix} \rightarrow L_2 + \frac{1}{3}L_3:$$

$$\begin{bmatrix} 1 & 0 & 0 & -1 & -1 & 0 \\ 0 & 1 & 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & -1 & 1 & -3 \end{bmatrix}$$

Uma vez que a matriz A foi transformada na matriz I, a matriz

$$B = \begin{bmatrix} -1 & -1 & 0 \\ -1 & 0 & -1 \\ -1 & 1 & -3 \end{bmatrix}$$

Equivalência de Matrizes (escreve-se B~A):

A.29.1 — Inversão de uma matriz de ordem 2 — Determinar a inversa da matriz:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\det A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Fazendo:

$$ad - bc = n$$

Equivalência de Matrizes (escreve-se $\mathbf{B} \sim \mathbf{A}$):

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$B = \begin{bmatrix} \frac{d}{n} & -\frac{b}{n} \\ -\frac{c}{n} & \frac{a}{n} \end{bmatrix}$$
 é a matriz A⁻¹, inversa de A.

Onde
$$n = det(A)$$

A.29.1.2 — Problemas resolvidos — Nos problemas 1 a 3, determinar a matriz inversa de cada uma das matrizes M, N e B, respectivamente, sendo:

$$M = \begin{bmatrix} 7 & 6 \\ 3 & 4 \end{bmatrix}, \quad N = \begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix} \quad e \quad B = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Soluções

1) det M =
$$\begin{vmatrix} 7 & 6 \\ 3 & 4 \end{vmatrix}$$
 = 28 - 18 = 10 e M⁻¹ = $\begin{vmatrix} \frac{4}{10} & -\frac{6}{10} \\ -\frac{3}{10} & \frac{7}{10} \end{vmatrix}$

2) det N =
$$\begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix}$$
 = 16 - 15 = 1 e N⁻¹ = $\begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix}$

3)
$$\det B = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = \cos^2 \theta + \sin^2 \theta = 1$$
 e

$$B^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

Matriz Ortogonal:

A.30 – Matriz ortogonal é a matriz quadrada A cuja transposta A^t coincide com a inversa A⁻¹. A matriz B do problema 3, item A.29.1.2 é ortogonal. De fato:

$$B = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad e \quad B^{t} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = B^{-1}$$

Os problemas 1 a 8 se referem às matrizes:

$$A = \begin{bmatrix} 10 & 25 \\ 2 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & -4 & 6 \\ 5 & -9 & 8 \\ 7 & -2 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -3 & 1 \\ -2 & -3 & -1 \\ -1 & 2 & -1 \end{bmatrix}$$

- 1) Calcular det A.
- 3) Calcular det C.
- 5) Verificar se $det(BC) = det(B) \times det(C)$.
- Se se multiplicar a segunda coluna de C por 2, o que acontece com det C?

- 2) Calcular det B.
- 4) Verificar se det(B + C) = det B + det C.
- 6) Se se trocar a primeira linha pela segunda na matriz, o que acontece com det B?
- 8) Verificar se det $B = \det B^t$.

Nos problemas 9 a 12, resolver as equações:

9)
$$\begin{vmatrix} 4 & 10 - x \\ 13 - x & 10 \end{vmatrix} = 0$$
 10) $\begin{vmatrix} 12 & 7 \\ x & x \end{vmatrix} = 15$

$$\begin{vmatrix} 3 & 2 & x \\ 1 & -2 & x \\ 2 & -1 & x \end{vmatrix} = 8$$

$$\begin{vmatrix} 12 & 1 & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{vmatrix} = 0$$

Problemas Teóricos:

A.31 — Problemas propostos — Nos problemas 1 a 5, determinar a matriz inversa de cada uma das matrizes dadas.

1)
$$A = \begin{bmatrix} 2 & 7 \\ 3 & 11 \end{bmatrix}$$

$$2) B = \begin{bmatrix} 9 & 7 \\ 5 & 4 \end{bmatrix}$$

$$3) C = \begin{bmatrix} -4 & -2 \\ -6 & -8 \end{bmatrix}$$

4)
$$E = \begin{bmatrix} -3 & 4 & -5 \\ 0 & 1 & 2 \\ 3 & -5 & 4 \end{bmatrix}$$

5)
$$F = \begin{bmatrix} -1 & -2 & -3 \\ -2 & -4 & -5 \\ -3 & -5 & -6 \end{bmatrix}$$

Dadas as matrizes A e C dos problemas 1 e 3:

- 6) Calcular (AC)-1
- 7) Verificar a igualdade $(AC)^{-1} = C^{-1}A^{-1}$

Respostas dos Problemas Teóricos:

- 1) $\det A = 0$.
- 3) $\det C = 1$.
- 5) A igualdade se verifica.
- 7) det C fica multiplicado por 2.
- 9) x = 18 e x = 5.
- 11) x = 4.

- 2) $\det B = 128$.
- 4) A igualdade não se verifica.
- 6) det B fica multiplicado por -1.
- 8) A igualdade se verifica.
- 10) x = 3.
- 12) x = 10.

Respostas dos Problemas Teóricos:

A.31.1 — Respostas ou roteiros para os problemas propostos

1 a 3) Os problemas são resolvidos de modo análogo aos do item A.29.1.2.

4)
$$E^{-1} = \begin{bmatrix} -\frac{14}{3} & -\frac{9}{3} & -\frac{13}{3} \\ -2 & -1 & -2 \\ 1 & 1 & 1 \end{bmatrix}$$

5)
$$F^{-1} = \begin{bmatrix} -1 & 3 & -2 \\ 3 & -3 & 1 \\ -2 & 1 & 0 \end{bmatrix}$$

- 6) Roteiro:
 - 1º) calcular AC;
 - 2º) calcular (AC)-1.
- 7) Roteiro:
 - 1°) calcular $C^{-1} = G$;
 - 2°) calcular $A^{-1} = H$;
 - 3º) calcular GH;
 - 4º) comparar GH com (AC)-1 calculado no problema 6.

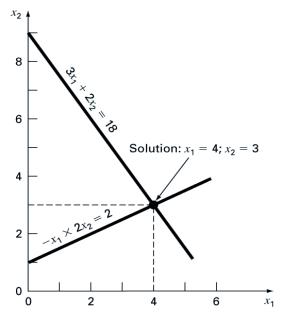
Sistemas de Equações Lineares

INTRODUÇÃO

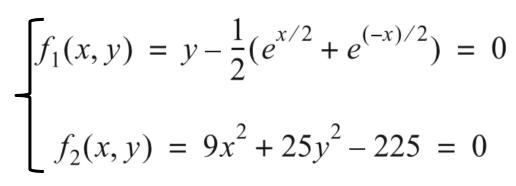
Equações com duas, ou mais, equações lineares ou não lineares são bem comuns nos problemas de Engenharia, ciência, economia, negócios, estatística, etc!

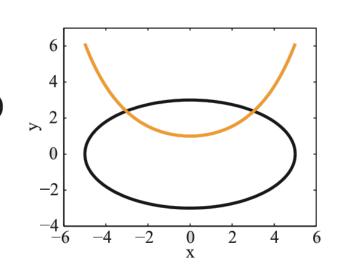
INTRODUÇÃO

> Problemas com duas, ou mais, equações são denominados de sistemas de equações:



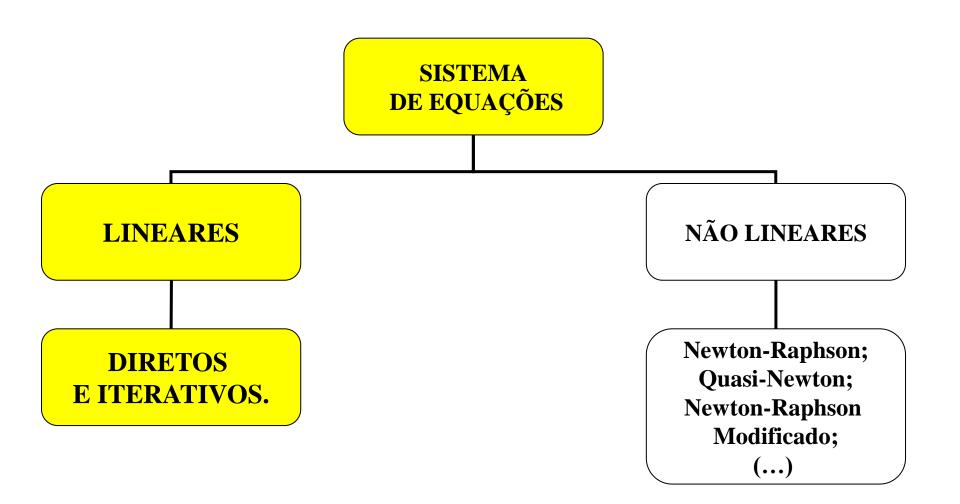
$$\begin{cases} 3x + 2y = 18 \\ x - 2y = -2 \end{cases}$$





INTRODUÇÃO

Problemas com duas, ou mais, equações são denominados de sistemas de equações:



SOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES

NOTAÇÕES

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Fazendo:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad e \quad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

o sistema pode ser escrito sob a forma matricial

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

ou, utilizando a forma abreviada:

$$AX = B$$

NOTAÇÕES

> GERAL

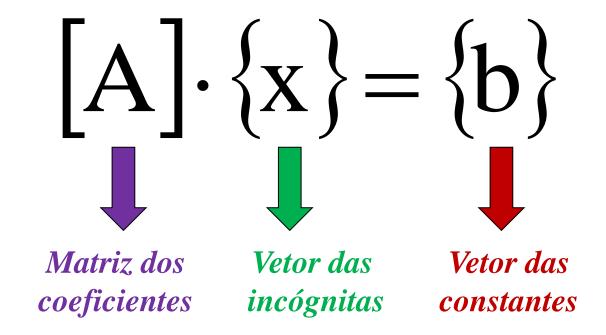
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

MATRICIAL
$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Forma Compacta

$$[A] \cdot \{x\} = \{b\}$$

DEFINIÇÃO



NOTAÇÕES

> MATRICIAL AUMENTADA

$$[A \mid b] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & | & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & | & b_2 \\ \vdots & \vdots & \ddots & \vdots & | & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & | & b_n \end{bmatrix}$$

NOTAÇÕES

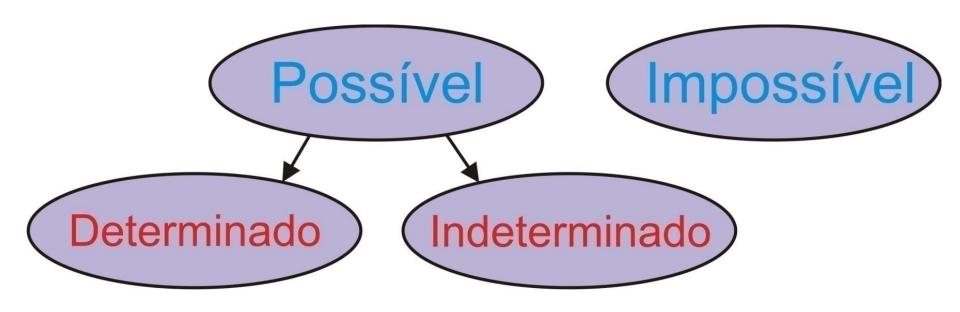
A.39 — Matriz ampliada de um sistema de equações lineares — Dado, por exemplo, um sistema de equações lineares

$$\begin{cases} 2x_1 + 4x_2 = 16 \\ 5x_1 - 2x_2 = 4 \\ 10x_1 - 4x_2 = 3, \end{cases}$$

esse sistema, omitindo as variáveis e o sinal =, pode ser representado assim:

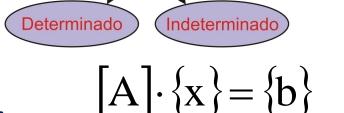
$$\begin{bmatrix}
2 & 4 & 16 \\
5 & -2 & 4 \\
10 & -4 & 3
\end{bmatrix}$$

CLASSIFICAÇÃO



> Possui pelo menos uma solução:

* Possível e Determinado



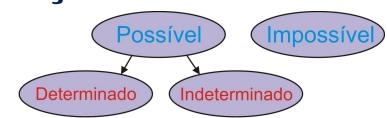
Impossível

Possível

- » Possui uma única solução;
- > O determinante de *A* deve ser diferente de zero;
- Se b for um vetor nulo, a solução do sistema será a solução trivial, ou seja, o vetor x também será nulo.

> Possui pelo menos uma solução:

* Possível e Determinado



$$[A] \cdot \{x\} = \{b\}$$

- A.34 Sistema compatível é o sistema de equações lineares que admite solução, isto é, que tem raízes.
- Um sistema compatível é determinado quando admite uma única solução. Exemplo: O sistema

$$\begin{cases} 2x + 3y = 18 \\ 3x + 4y = 25 \end{cases}$$

é compatível e determinado, pois tem como raízes unicamente x = 3 e y = 4.

> Possui pelo menos uma solução:

* Possível e Determinado



Pode-se calcular esse tipo de problema considerando a matriz inversa

Pre-multiplicando ambos os membros por A^{-1} (a matriz A tem inversa, pois det $A \neq 0$), vem:

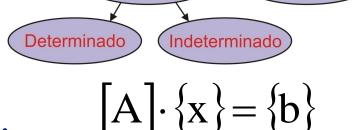
$$A^{-1}AX = A^{-1}B$$

$$IX = A^{-1}B$$

$$X = A^{-1}B$$

> Possui uma ou mais soluções:

* Possível e Indeterminado



Impossível

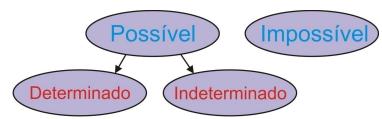
Possível

> Admite infinitas soluções;

- » O determinante de A deve ser nulo;
- > O vetor de **constantes** *b* deve ser **nulo** ou **múltiplo** de uma coluna de A.

> Possui uma ou mais soluções:

* Possível e Indeterminado



$$[A] \cdot \{x\} = \{b\}$$

 Um sistema compatível é indeterminado quando admite mais de uma solução (neste texto, admite infinitas soluções). Exemplo: O sistema

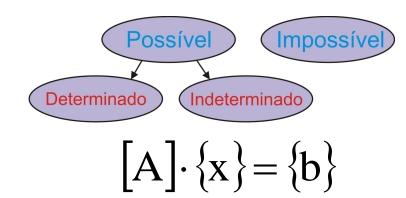
$$\begin{cases} 4x + 2y = 100 \\ 8x + 4y = 200 \end{cases}$$

é compatível e indeterminado, pois admite infinitas soluções:

											1
X	25	24	23	22	21	20	19	18	17	16	

> Não Possui Solução:

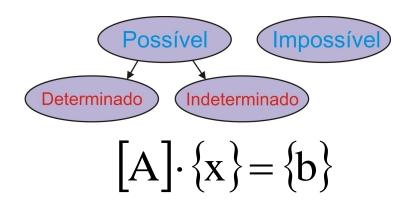
* Impossível



- * O determinante de A deve ser nulo;
- ❖ O vetor b não pode ser nulo ou múltiplo de alguma coluna de A.

> Não Possui Solução:

* Impossível



A.35 — Sistema incompatível é o sistema de equações lineares que não admite solução. Exemplo: O sistema

$$\begin{cases} 3x + 9y = 12 \\ 3x + 9y = 15 \end{cases}$$

é incompatível, pois 3x + 9y não pode ser simultaneamente igual a 12 e igual a 15 para mesmos valores de x e y.

Outras Definições

> Sistema Linear Homogêneo:

A.36 — Sistema linear homogêneo é o sistema de equações lineares cujos termos independentes são todos nulos. Exemplo: É homogêneo o sistema:

$$\begin{cases} 3x_1 + 6x_2 = 0 \\ 12x_1 + 24x_2 = 0 \end{cases}$$

• Todo sistema linear homogêneo tem, pelo menos, uma solução, denominada solução trivial: $x_i = 0$ (no caso, i = 1,2), isto é, $x_1 = x_2 = 0$. Além

Outras Definições

> Sistemas Equivalentes:

A.37 — Sistemas equivalentes são sistemas de equações lineares que admitem a mesma solução. Exemplo: Os sistemas

$$\begin{cases} 3x + 6y = 42 \\ 2x - 4y = 12 \end{cases} e \begin{cases} x + 2y = 14 \\ x - 2y = 6 \end{cases}$$

são equivalentes porque admitem a mesma solução: x = 10 e y = 2.

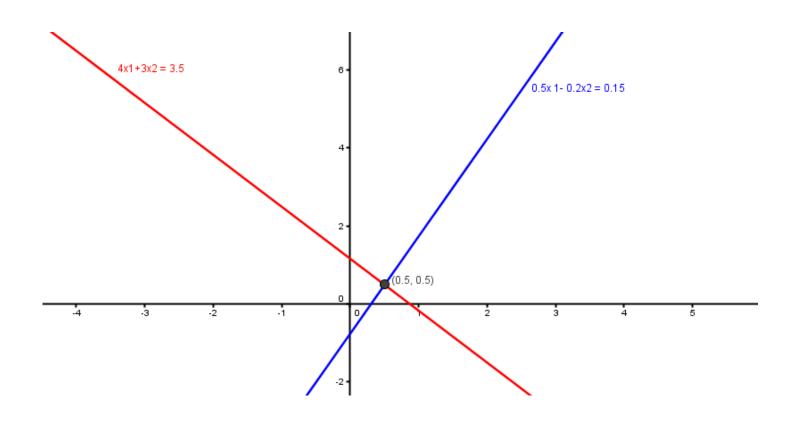
Outras Definições

> Sistemas Equivalentes:

- A.38 Operações elementares e sistemas equivalentes Um sistema de equações lineares se transforma num sistema equivalente quando se efetuam operações elementares sobre suas equações:
 - I) Permutação de duas equações.
- II) Multiplicação de uma equação por um número real diferente de zero.
- III) Substituição de uma equação por sua soma com outra equação previamente multiplicada por um número real diferente de zero.

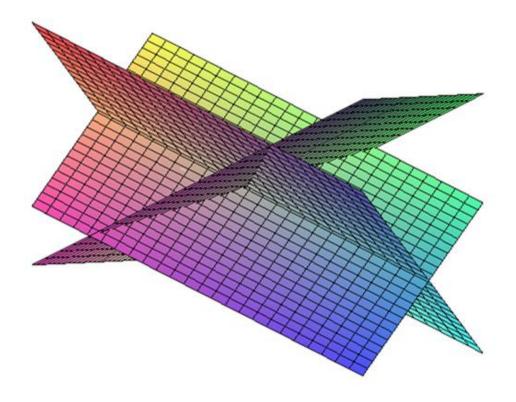
GEOMETRICAMENTE

$$\begin{cases} 4x_1 + 3x_2 = 3.5 \\ 0.5x_1 - 0.2x_2 = 0.15 \end{cases}$$



GEOMETRICAMENTE

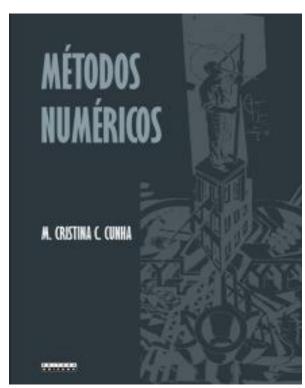
$$\begin{cases} x_1 + x_2 + x_3 = 3 \\ x_1 - x_2 + x_3 = 1 \\ x_1 - x_3 = 0 \end{cases}$$



CURIOSIDADE

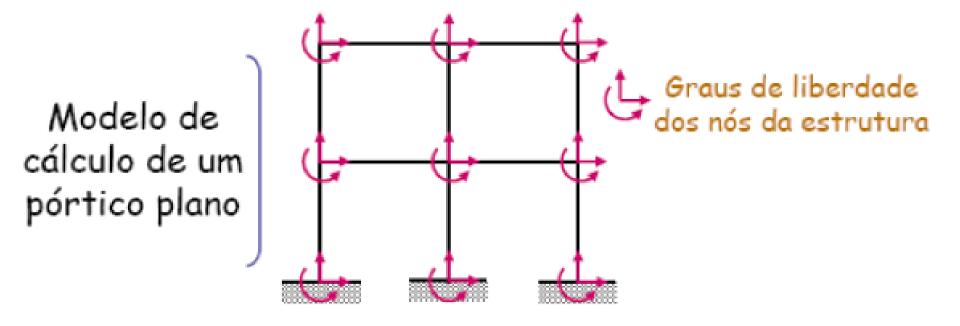
Existem estimativas que apontam que, a cada 4 (quatro) problemas de simulação em matemática,
 3 (três) convertem-se em solução de sistemas de equações.

Cristina Cunha (1993)



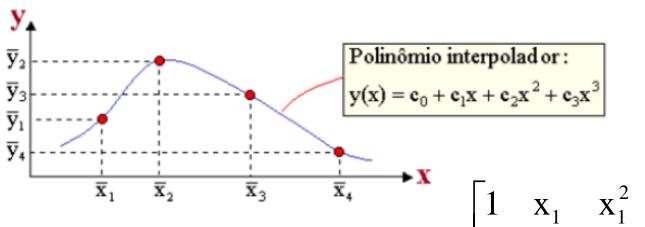
EX. DE APLICAÇÕES NA ENGENHARIA

Método da Rigidez: Calcular os deslocamentos, as reações e os esforços internos solicitantes em uma dada estrutura:



EX. DE APLICAÇÕES NA ENGENHARIA

Interpolação da Dados de Chuva: (Conjunto de dados: tempo vs intensidade de chuva), encontrar o polinômio interpolador que permita fazer estimativas para outros dados.

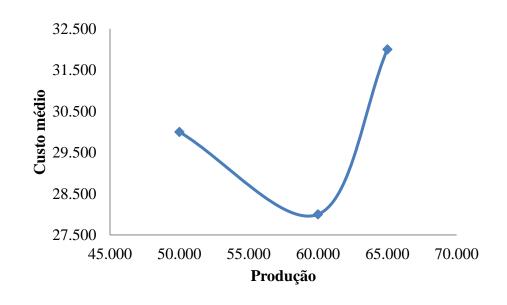


$$\begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \end{bmatrix} \cdot \begin{cases} c_0 \\ c_1 \\ c_2 \\ c_3 \end{cases} = \begin{cases} y_1 \\ y_2 \\ y_3 \\ y_4 \end{cases}$$

EX. DE APLICAÇÕES NA ENGENHARIA

Interpolação do Custo Médio de um Produto: Estimar o custo médio de um produto A com base em uma série de dados obtidos em anos anteriores.

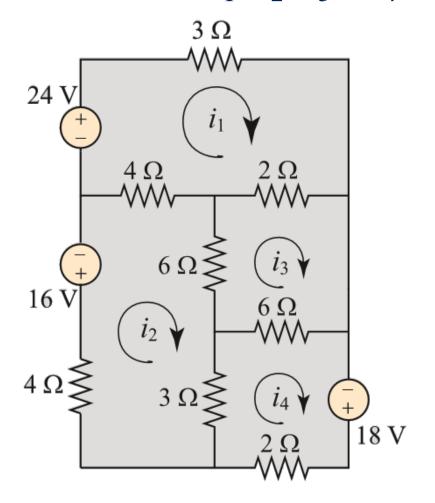
Ano	Produção	Custo Médio
2007	50.000	30.000
2008	60.000	28.000
2009	65.000	32.000
2010	70.000	35.000



Em 2012 queremos uma produção de 100.000 produtos. Quanto seria avaliado o custo médio de cada produto?

EX. DE APLICAÇÕES NA ENGENHARIA

Engenharia elétrica: Lei de Kirchhoff, as correntes i_1 , i_2 , i_3 e i_4 podem ser determinadas:



$$9i_{1} - 4i_{2} - 2i_{3} = 24$$

$$-4i_{1} + 17i_{2} - 6i_{3} - 3i_{4} = -16$$

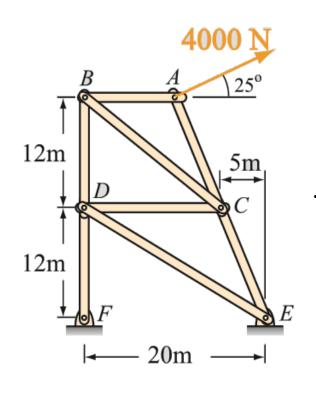
$$-2i_{1} - 6i_{2} + 14i_{3} - 6i_{4} = 0$$

$$-3i_{2} - 6i_{3} + 11i_{4} = 18$$

Circuitos mais complicados podem requerer solução de sistemas com um número maior de equações!

EX. DE APLICAÇÕES NA ENGENHARIA

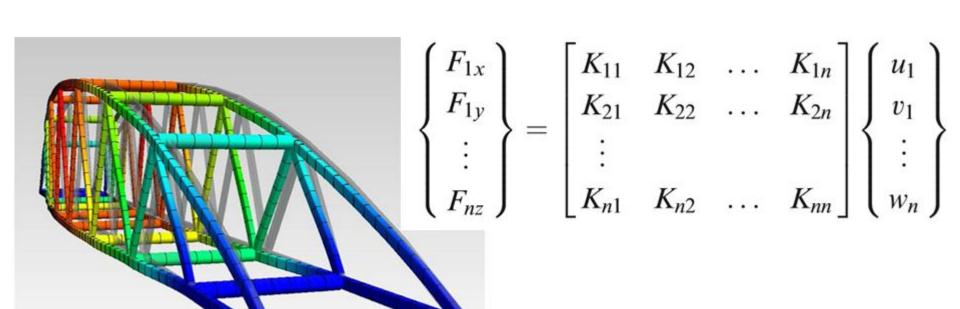
Engenharia Civil/Produção: cálculo da força nos membros de uma treliça:



$$\begin{split} & 0.9231 F_{AC} = 1690 \\ & F_{AB} - 0.7809 F_{BC} = 0 \\ & F_{CD} + 0.8575 F_{DE} = 0 \\ & 0.3846 F_{CE} - 0.3846 F_{AC} - 0.7809 F_{BC} - F_{CD} = 0 \\ & 0.9231 F_{AC} + 0.6247 F_{BC} - 0.9231 F_{CE} = 0 \\ & - F_{AB} - 0.3846 F_{AC} = 3625 \\ & 0.6247 F_{BC} - F_{BD} = 0 \\ & F_{BD} - 0.5145 F_{DE} - F_{DF} = 0 \end{split}$$

EX. DE APLICAÇÕES NA ENGENHARIA

Método dos Elementos Finitos: cálculo dos deslocamentos em uma ponte:



➤ Um sistema linear de 2 (ou 3) equações com 2 (ou 3) incógnitas pode ser resolvido manualmente por substituição ou com o uso de métodos matemáticos:

- Ex.: regra de Cramer.
- calcula-se o determinante D da matriz dos coeficientes das variáveis;
- calcula-se o determinante D_i da matriz que se obtém substituindo, na matriz dos coeficientes das variáveis, a coluna dos coeficientes da variável x_i pela coluna dos termos independentes;
 - 3) calcula-se x_i pela fórmula:

$$x_i = \frac{D_i}{D}$$

➤ A regra de CRAMER:

Exemplo:

a) Para resolver o sistema $\begin{cases} 2x + 3y = 7 \\ x - y = 1 \end{cases}$, fazemos:

Cálculo do determinate D:

$$D = \begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix} = -5$$

Cáculo do determinante Dx:

Cálculo do determinate Dy:

$$D_X = \begin{bmatrix} 7 & 3 \\ 1 & -1 \end{bmatrix} = -10$$

$$Dy = \begin{bmatrix} 2 & 7 \\ 1 & 1 \end{bmatrix} = 1$$

Logo:

$$x = \frac{Dx}{D} = \frac{-10}{-5} = 2$$

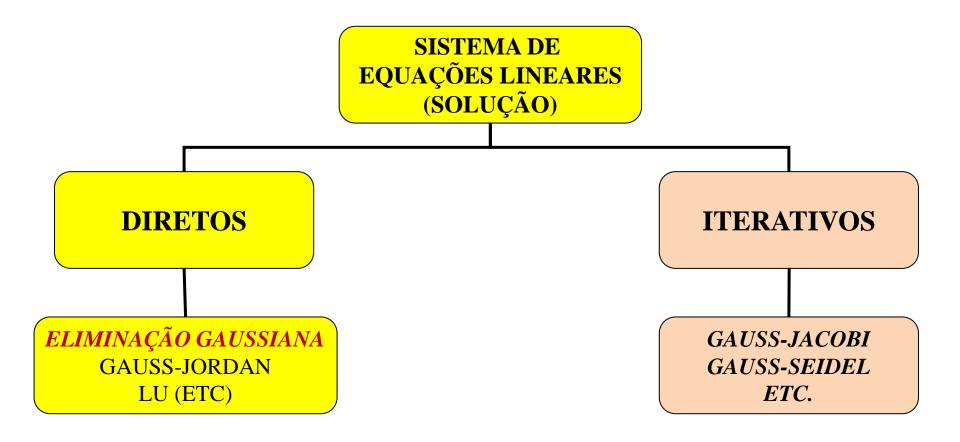
$$y = \frac{Dy}{D} = \frac{-5}{-5} = 1$$

Conjunto verdade: V = {(2, 1)}

Resolver um sistema usando CRAMER é praticamente impossível se o número de equações (e incógnitas) forem diferentes ou maior que três!

Dessa forma métodos numéricos são aplicados, tais como:

Dessa forma métodos numéricos são aplicados, tais como:



- 1. São aqueles que conduzem à solução exata a menos de erros de arredondamento introduzidos pela máquina, após um número finito de passos;
- 2. Pertencem a esta classe todos os métodos estudados no 1º e 2º graus (Método da substituição, Cramer, etc...)

$$[A] \cdot \{x\} = \{b\}$$
 Se A é inversível: $\{x\} = [A]^{-1} \cdot \{b\}$

- 3. Esses métodos não são usados em problemas práticos quando o número de equações é elevado, pois apresentam problemas de desempenho;
- 4. Necessidade do emprego de métodos mais elaborados: *Eliminação de Gauss*.

O sistema de equações inicial é manipulado até se transformar em um sistema equivalente de fácil resolução: *Formas triangular ou diagonal*.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

$$= \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

$$= \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

$$= \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\ a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\ a_{33}x_3 + \dots + a_{3n}x_n = b_3 \\ \vdots \\ a_{n-1, n-1}x_{n-1} + a_{n-1, n}x_n = b_{n-1} \\ a_{nn}x_n = b_n \end{bmatrix}$$

Sistema de equações na forma triangular superior

Usado no método de ELIMINAÇÃO GAUSSIANA

Desistema de equações inicial é manipulado até se transformar em um sistema equivalente de fácil resolução: *Formas triangular ou diagonal*.

$$\begin{bmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 \\ a_{21}x_1 + a_{22}x_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n \end{bmatrix}$$

Sistema de equações na forma triangular inferior

A forma triangular inferior é usada em conjunto com a forma triangular superior no **método de decomposição LU**

O sistema de equações inicial é manipulado até se transformar em um sistema equivalente de fácil resolução: *Formas triangular ou diagonal*.

$$\begin{bmatrix} a_{11} & a & a & a \\ a & a_{22} & a & a \\ a & a & a_{33} & a \\ a & a & a & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \begin{bmatrix} a_{11}x_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 \\ a_{12}x_2 \\ a_{13}x_3 \\ \vdots \\ a_nx_n = b_n \end{bmatrix}$$

Sistema de equações na forma diagonal

Uma forma similar é usada no método de Gauss-Jordan

MÉTODOS DE ELIMINAÇÃO GAUSSIANA

> Eliminação Gaussiana

- Atribuído ao matemático alemão Carl Friedrich
 Gauss;
- Consiste em transformar o sistema linear original em um sistema linear equivalente com matriz dos coeficientes triangular superior;

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases} \qquad \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ \overline{a}_{22}x_2 + \overline{a}_{23}x_3 = \overline{b}_2 \\ \overline{a}_{33}x_3 = \overline{b}_3 \end{cases}$$

Sistemas Triangulares

$$2x_1 - x_2 + x_3 = 2$$
$$x_2 + 2x_3 = 3$$
$$x_3 = 1$$

- O sistema pode ser resolvido facilmente por substituição de variáveis
- Sistema Triangular Superior: todos os elementos localizados abaixo da diagonal principal são nulos, isto é, a_{ii} =0 se i>j
- Solução: retro substituição

Eliminação Gaussiana: Processo

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{31} & a_{12} & a_{13} & a_{14} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

$$Conjunto inicial de equações$$

$$Passo 1$$

$$Passo 2$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33}^{"} & a_{34} \\ 0 & 0 & a_{33}^{"} & a_{34}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ b_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_3 \\ b_4 \end{bmatrix}$$

$$0 & 0 & a_{33}^{"} & a_{34}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ a_{31}^{"} & a_{32}^{"} & a_{24}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ b_3 \\ b_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_3 \\ b_4 \end{bmatrix}$$

$$0 & 0 & a_{33}^{"} & a_{34}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ a_{31}^{"} & a_{42}^{"} & a_{43}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ a_{31}^{"} & a_{42}^{"} & a_{43}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ a_{31}^{"} & a_{42}^{"} & a_{43}^{"} & a_{44}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ b_3 \\ a_{31}^{"} & a_{42}^{"} & a_{43}^{"} & a_{44}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ a_{31}^{"} & a_{42}^{"} & a_{43}^{"} & a_{44}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \\ a_{32}^{"} & a_{33}^{"} & a_{34}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \\ a_{31}^{"} & a_{42}^{"} & a_{43}^{"} & a_{44}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ a_{33}^{"} & a_{34}^{"} & a_{44}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \\ a_{34}^{"} & a_{44}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \\ a_{34}^{"} & a_{44}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \\ a_{34}^{"} & a_{44}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \\ a_{44}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \\ a_{44}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ a_{44}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \\ a_{44}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \\ a_{44}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \\ a_{44}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \\ a_{44}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \\ a_{44}^{"} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \\ a_{44}^$$

- **Eliminação Gaussiana**
- ➤ Propriedades: A solução do sistema [A]{x}={b} não se altera se o submetemos a uma sequência de operações do tipo:
 - Multiplicação de uma equação por uma constante não-nula;
 - Adicionar um múltiplo de uma equação a uma outra equação;
 - Troca da ordem das equações.

- Eliminação Gaussiana s/ Pivoteamento: Processo
 - Passos do Método
 - Eliminar os coeficientes de x₁ presentes nas linhas 2, 3, ...,n;
 - Possível desde que $a_{11} \neq 0$
 - Substituir a linha 2, L_2 , pela combinação linear:

$$L_2' = L_2 - m_{21} \cdot L_1 \qquad m_{21} = \underbrace{a_{21}}_{\text{condição necessária}} \text{pivô} \\ \text{condição necessária}$$

- Eliminação Gaussiana s/ Pivoteamento: Processo
 - Passos do Método
 - Eliminar os coeficientes de x₁ presentes nas linhas 2, 3, ...,n;
 - Possível desde que $a_{11} \neq 0$
 - Substituir a linha 3, L_3 , pela combinação linear:

$$L_3' = L_3 - m_{31} \cdot L_1 \qquad m_{31} = \underbrace{a_{31}}_{\text{condição necessária}} \text{pivô} \\ \text{condição necessária}$$

- Eliminação Gaussiana s/ Pivoteamento: Processo
 - Passos do Método
 - Eliminar os coeficientes de x₁ presentes nas linhas 2, 3, ...,n;
 - Possível desde que $a_{11} \neq 0$
 - Deve-se continuar o processo até a linha *n*:

$$L_n' = L_n - m_{n1} \cdot L_1 \qquad \boxed{m_{n1}} = \underbrace{a_{n1}}_{a_{11}} \quad \text{piv\^o} \\ \text{condiç\~ao necess\'aria} \\ \text{multiplicador} \qquad \boxed{}$$

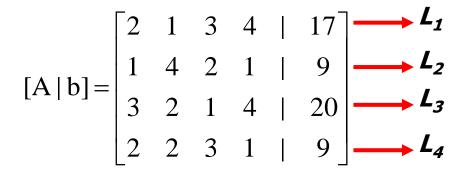
- Eliminação Gaussiana s/ Pivoteamento: Processo
 - Passos do Método
 - Eliminar os coeficientes de x₂ presentes nas linhas 3, 4, ...,n;
 - Possível desde que $a_{22} \neq 0$
 - Eliminar os coeficientes de x₃ presentes nas linhas 4, 5, ...,n;
 - Possível desde que $a_{33} \neq 0$

Repete-se o processo até chegar com uma matriz triangular superior!!!

Eliminação Gaussiana s/ Pivoteamento: Processo

Exemplo

$$\begin{cases} 2x_1 + x_2 + 3x_3 + 4x_4 = 17 \\ x_1 + 4x_2 + 2x_3 + x_4 = 9 \\ 3x_1 + 2x_2 + x_3 + 4x_4 = 20 \\ 2x_1 + 2x_2 + 3x_3 + x_4 = 9 \end{cases}$$



Etapa 1: eliminar os coeficientes de x₁

2) 1	3	4	17
1	4	2	1	9
3	2	1	4	17 9 20

Pivô:
$$a_{11} \neq 0$$

Pivô:
$$a_{11} \neq 0$$

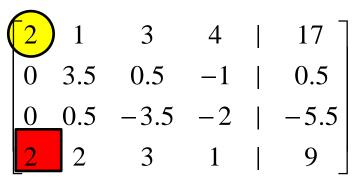
Multiplica dores: $m_{21} = \frac{a_{21}}{a_{11}}$, $m_{31} = \frac{a_{31}}{a_{11}}$ e $m_{41} = \frac{a_{41}}{a_{11}}$

Eliminação Gaussiana s/ Pivoteamento: Processo

- Exemplo
 - Etapa 1: eliminar os coeficientes de x₁

Combinação Linear : $L_2' = L_2 - m_{21}L_1$

Combinação Linear : $L_3' = L_3 - m_{31}L_1$



Eliminação Gaussiana s/ Pivoteamento: Processo

- Exemplo
 - Etapa 1: eliminar os coeficientes de x₁

Combinação Linear :
$$L_4 = L_4 - m_{41}L_1$$

Eliminação Gaussiana s/ Pivoteamento: Processo

Exemplo

Etapa 2: eliminar os coeficientes de x₂

$$\begin{bmatrix} 2 & 1 & 3 & 4 & | & 17 \\ 0 & 3.5 & 0.5 & -1 & | & 0.5 \\ 0 & 0.5 & -3.5 & -2 & | & -5.5 \\ 0 & 1 & 0 & -3 & | & -8 \end{bmatrix}$$
 Pivô: $a_{22} \neq 0$ Multiplica dores: $m_{32} = \frac{a_{32}}{a_{22}} e m_{42} = \frac{a_{42}}{a_{22}}$

Multiplica dores:
$$m_{32} = \frac{a_{32}}{a_{22}} e m_{42} = \frac{a_{42}}{a_{22}}$$

Eliminação Gaussiana s/ Pivoteamento: Processo

Exemplo

• Etapa 2: eliminar os coeficientes de x₂

Combinação Linear : $L_3 = L_3 - m_{32}L_2$

$$\begin{bmatrix} 2 & 1 & 3 & 4 & | & 17 \\ 0 & 3.5 & 0.5 & -1 & | & 0.5 \\ 0 & 0 & -3.571 & -1.857 & | & -5.571 \\ 0 & 1 & 0 & -3 & | & -8 \end{bmatrix}$$
 Combinação Linear : $L_4 = L_4 - m_{42}L_2$

$$\begin{bmatrix} 2 & 1 & 3 & 4 & | & 17 \\ 0 & 3.5 & 0.5 & -1 & | & 0.5 \\ 0 & 0 & -3.571 & -1.857 & | & -5.571 \\ 0 & 0 & -0.143 & -2.714 & | & -8.143 \end{bmatrix}$$

Eliminação Gaussiana s/ Pivoteamento: Processo

Exemplo

■ Etapa 3: eliminar os coeficientes de x₃

$$\begin{bmatrix} 2 & 1 & 3 & 4 & | & 17 \\ 0 & 3.5 & 0.5 & -1 & | & 0.5 \\ 0 & 0 & -3.571 & -1.857 & | & -5.571 \\ 0 & 0 & -0.143 & -2.714 & | & -8.143 \end{bmatrix}$$
Pivô: $a_{33} \neq 0$ Multiplica dor: $m_{43} = \frac{a_{43}}{a_{33}}$

Potenciais Dificuldades encontradas com a aplicação do método de Eliminação de Gauss

- ➤ O ELEMENTO PIVÔ É PEQUENO EM RELAÇÃO AOS DEMAIS TERMOS NA LINHA PIVÔ: Erros de arredondamento significativos podem ocorrer
- > O ELEMENTO PIVÔ É ZERO: Como a linha pivô é dividida pelo elemento pivô, surge um problema durante a execução do procedimento de eliminação de Gauss se o valor do elemento pivô for igual a zero.

Eliminação Gaussiana COM Pivoteamento:

 Objetivo: evitar que os pivôs usados no processo de eliminação sejam nulos;

□Passos do Método:

Ao encontrar um pivô nulo fazer a permuta da linha que contém o pivô por uma linha com maior coeficiente em módulo na coluna que contém o pivô.

Eliminação Gaussiana COM Pivoteamento:

Exemplo

$$\begin{cases}
5x_1 + 10x_2 + x_3 - 2x_4 = -5 \\
4x_1 + 8x_2 + 2x_3 - x_4 = 3 \\
10x_1 + 5x_2 + 3x_3 + x_4 = 9 \\
2x_1 + x_2 + x_3 + 2x_4 = 12
\end{cases}$$

$$[A \mid b] = \begin{bmatrix}
5 & 10 & 1 & -2 & | & -5 \\
4 & 8 & 2 & -1 & | & 3 \\
10 & 5 & 3 & 1 & | & 9 \\
2 & 1 & 1 & 2 & | & 12
\end{bmatrix}
\xrightarrow{L_2}$$

Forma Matricial Aumentada

■ Etapa 1: eliminar os coeficientes de x₁

$$\begin{bmatrix} \boxed{5} & 10 & 1 & -2 & | & -5 \\ 4 & 8 & 2 & -1 & | & 3 \\ 10 & 5 & 3 & 1 & | & 9 \\ 2 & 1 & 1 & 2 & | & 12 \end{bmatrix} \text{Piv\^o}: \ a_{11} \neq 0$$

$$\text{Multiplica dores: } m_{21} = \frac{a_{21}}{a_{11}}, \ m_{31} = \frac{a_{31}}{a_{11}} \text{ e } m_{41} = \frac{a_{41}}{a_{11}}$$

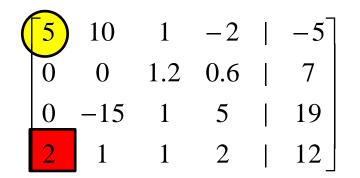
Eliminação Gaussiana COM Pivoteamento:

Exemplo

■ Etapa 1: eliminar os coeficientes de x₁

Combinação Linear : $L_2 = L_2 - m_{21}L_1$

Combinação Linear : $L_3 = L_3 - m_{31}L_1$



Eliminação Gaussiana COM Pivoteamento:

- Exemplo
 - Etapa 1: eliminar os coeficientes de x₁

Combinação Linear :
$$L_4 = L_4 - m_{41}L_1$$

Eliminação Gaussiana COM Pivoteamento:

Exemplo

■ Etapa 2: eliminar os coeficientes de x₂

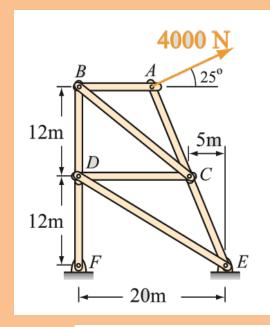
$$\begin{bmatrix} 5 & 10 & 1 & -2 & | & -5 \\ 0 & \boxed{0} & 1.2 & 0.6 & | & 7 \\ 0 & \boxed{-15} & 1 & 5 & | & 19 \\ 0 & \boxed{-5} & 0.6 & 2.8 & | & 14 \end{bmatrix} \text{ Pivô: } \mathbf{a}_{22} = \mathbf{0}$$

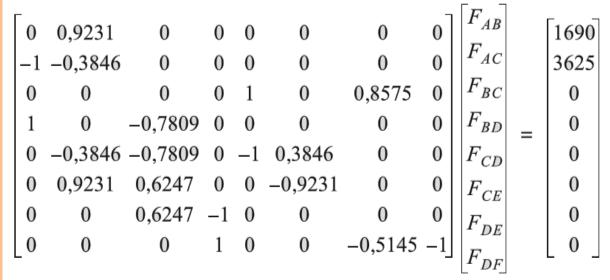
Busca pelo maior coeficiente em módulo na coluna que contém o pivô nulo e abaixo da diagonal principal
$$\begin{bmatrix} 5 & 10 & 1 & -2 & | & -5 \\ 0 & -15 & 1 & 5 & | & 19 \\ 0 & 0 & 1.2 & 0.6 & | & 7 \\ 0 & -5 & 0.6 & 2.8 & | & 14 \end{bmatrix}$$

Comentários adicionais sobre a Pivotação

- Os cálculos numéricos são menos propensos a erros se o elemento pivô possuir um valor numérico absoluto grande em comparação com os demais elementos na mesma linha.
- Consequentemente, é sempre bom empregar a pivotação para se ter um elemento pivô com o maior valor possível (mesmo quando a pivotação não for necessária).

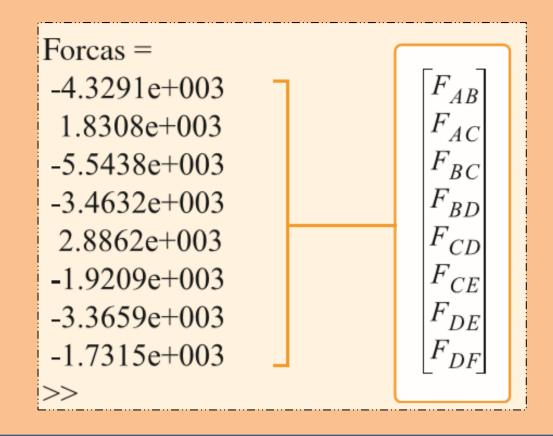
Resolução de um Problema de Engenharia Utilizando eliminação Gaussiana





Resolução de um Problema de Engenharia Utilizando eliminação Gaussiana

Usando o Matlab: Quando se executa o programa, a seguinte solução é exibida na janela de comandos: x = a\b

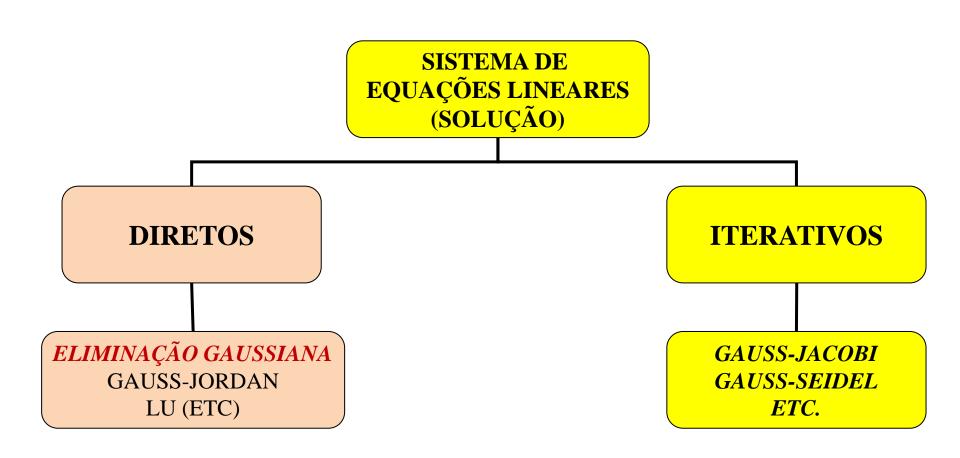


MÉTODO DIRETO DE DECOMPOSIÇÃO LU

MÉTODO DIRETO DE GAUSS-JORDAN

MÉTODOS ITERATIVOS

SISTEMAS DE EQUAÇÕES LINEARES



Métodos Iterativos

- 1. Fornecem *solução aproximada* de um sistema de equações lineares após a realização de um número finito de passos (iterações);
- 2. São convenientemente empregados para **sistemas grandes e esparsos** que aparecem com frequência na discretização de equações diferenciais;
- 3. Geram uma sequência de vetores {x}^(k), a partir de uma aproximação inicial {x}⁽⁰⁾;
- 4. Necessitam de algumas *condições para garantir a convergência* da sequência de aproximações.

Problemas Teóricos:

A.41 - Problemas Propostos - Resolver os sistemas

1)
$$\begin{cases} 2x + 4y + 6z = -6 \\ 3x - 2y - 4z = -38 \\ 1x + 2y + 3z = -3 \end{cases}$$

2)
$$\begin{cases} 4x - y - 3z = 15 \\ 3x - 2y + 5z = -7 \\ 2x + 3y + 4z = 7 \end{cases}$$

3)
$$\begin{cases} 1x + 2y + 3z = 10 \\ 3x + 4y + 6z = 23 \\ 3x + 2y + 3z = 10 \end{cases}$$

4)
$$\begin{cases} 1x + 4y + 6z = 0 \\ -1,5x - 6y - 9z = 0 \end{cases}$$

5)
$$\begin{cases} 2x_1 + 2x_2 + 4x_3 = 0 \\ 3x_1 + 5x_2 + 8x_3 = 0 \\ 5x_1 + 25x_2 + 20x_3 = 0 \end{cases}$$

1)
$$x = \frac{-41 + z}{4}$$
 e $y = \frac{29 - 13z}{8}$

2)
$$x = 3$$
, $y = 3$ e $z = -2$

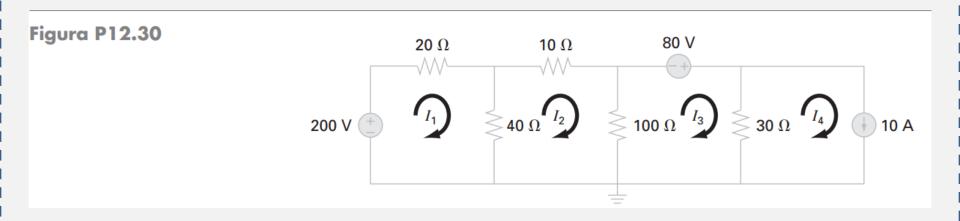
- 3) O sistema é incompatível.
- Solução trivial: x = y = z = 0
 Soluções próprias: x = -4y -6z
- 5) Só a solução trivial: x = y = z = 0

Problema de Aplicação Prática:

12.30 O sistema de equações a seguir foi gerado ao se aplicar a lei de correntes na malha ao circuito da Figura P12.30:

$$60I_1 - 40I_2 = 200$$
$$-40I_1 + 150I_2 - 100I_3 = 0$$
$$-100I_2 + 130I_3 = 230$$

Determine I_1 , I_2 e I_3 .

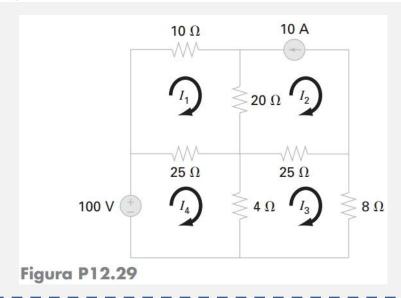


Problema de Aplicação Prática:

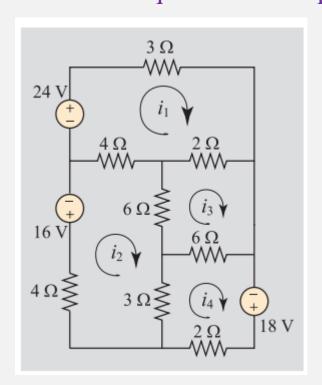
12.29 O sistema de equações a seguir foi gerado ao se aplicar a lei de correntes na malha ao circuito da Figura P12.29:

$$55I_1 - 25I_4 = -200$$
$$-37I_3 - 4I_4 = -250$$
$$-25I_1 - 4I_3 + 29I_4 = 100$$

Determine I_1 , I_3 e I_4 .



Problema de Aplicação Prática: Um exemplo de um problema na engenharia elétrica que requer a solução de um sistema de equações é mostrado na Figura. Usando a lei de Kirchhoff, as correntes i₁, i₂, i₃ e i₄ podem ser determinadas com a solução do seguinte sistema de quatro equações. a) Resolva o Problema aplicando a Eliminação Gaussiana. b) Depois de obter a matriz triangular superior, encontre o determinante, lembrando que será dado pelo produto dos elementos da diagonal principal.



$$9i_{1} - 4i_{2} - 2i_{3} = 24$$

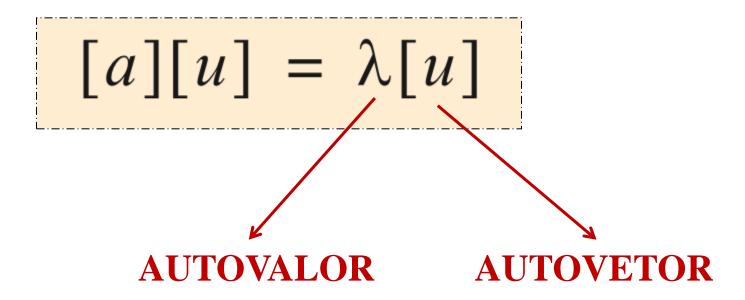
$$-4i_{1} + 17i_{2} - 6i_{3} - 3i_{4} = -16$$

$$-2i_{1} - 6i_{2} + 14i_{3} - 6i_{4} = 0$$

$$-3i_{2} - 6i_{3} + 11i_{4} = 18$$

AUTOVALORES E AUTOVETORES (Valores Próprios e Vetores Próprios)

Para uma dada matriz [a] $(n \times n)$, o número λ é um AUTOVALOR da matriz se:



Para uma dada matriz [a] $(n \times n)$, o número λ é um AUTOVALOR da matriz se:

$$[a][u] = \lambda[u]$$

 \triangleright O vetor [u] é um vetor coluna ($n\tilde{a}o\ nulo$) com n elementos chamado de **AUTOVETOR** associado ao autovalor λ .

> A Eq. pode ser vista de uma forma mais geral:

$$[a][u] = \lambda[u]$$

$$Lu = \lambda u$$

 \blacktriangleright O operador matemático L (multiplicação, diferenciação, integração, etc) aplicado em [u] (vetor, matriz, função, etc) resulta em λ vezes [u].

$$Lu = \lambda u$$

- \blacktriangleright O operador matemático L (multiplicação, diferenciação, integração, etc) aplicado em [u] (vetor, matriz, função, etc) resulta em λ vezes [u].
- Por exemplo:

$$\frac{d^2y}{dx^2} = k^2y$$

EXEMPLOS DE APLICAÇÃO NA ENGENHARIA

➤ AUTOVALORES e AUTOVETORES aparecem em métodos numéricos e têm importância especial na CIÊNCIA E NA ENGENHARIA.

 Genética: Determinação da Quantidade de Genótipos em gerações ao passar do tempo:

Tabela 1. Probabilidades dos Possíveis Genótipos dos Descendentes

Genótipo do	Genótipo dos Pais					
Descendente	AA x AA	AA x Aa	AA x aa	Aa x Aa	Aa x aa	аа х аа
(AA)	1	1/2	0	1/4	0	0
(Aa)	0	1/2	1	1/2	1/2	0
(aa)	0	0	0	1/4	1/2	1

$$[a][u] = \lambda[u]$$

Resolução de um Sistema Linear de EDO:

$$\begin{cases} \frac{dx}{dt} = ax + by + f(t) \\ \frac{dy}{dt} = cx + dy + g(t) \end{cases}$$

A matriz dos coeficientes do sistema é

$$\left(\begin{array}{cc} 0 & 1 \\ -\frac{c}{a} & -\frac{b}{a} \end{array}\right)$$

O polinômio característico é

$$\lambda^2 - \left(0 - \frac{b}{a}\right) \lambda + \frac{c}{a} = 0$$

Que é equivalente a equação algébrica

$$a \lambda^2 + b \lambda + c = 0$$

A curvatura de uma coluna delgada sujeita a uma carga **P** pode ser modelada por:

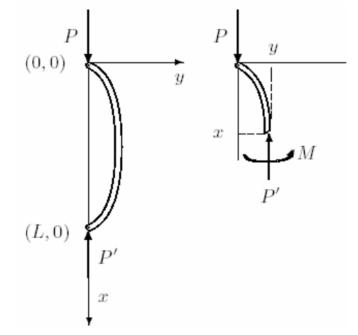
$$\frac{d^2y}{dx^2} = \frac{M}{EI}$$

Onde:

$$\frac{d^2y}{dx^2}$$
 é a curvatura

M é o momento de curvatura

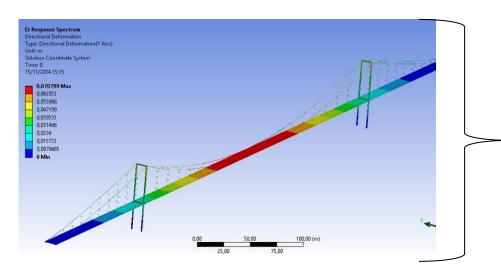
E é o módulo de elasticidade



I é o momento de inércia da seção transversal sobre o eixo neutro

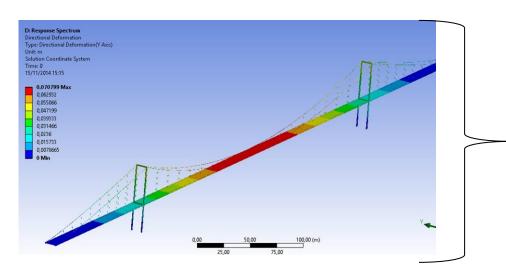
$$p_{crit} = \frac{\pi^2 EI}{L^2}$$

➤ Por exemplo, no estudo de VIBRAÇÕES:



- > AUTOVALORES = representam as frequências naturais
- > AUTOVETORES = modos dessas vibrações.

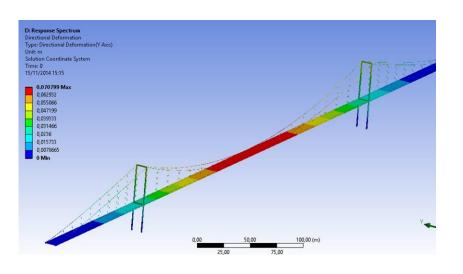
➤ Por exemplo, no estudo de VIBRAÇÕES:

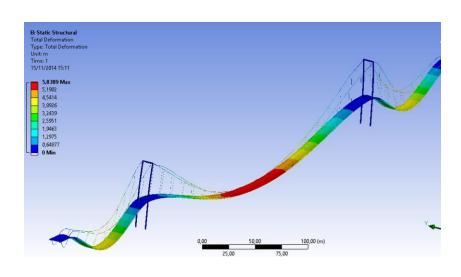


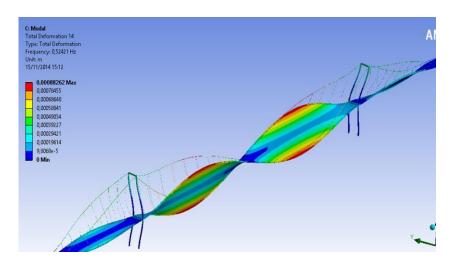
- > AUTOVALORES = representam as frequências naturais
- > AUTOVETORES = modos dessas vibrações.

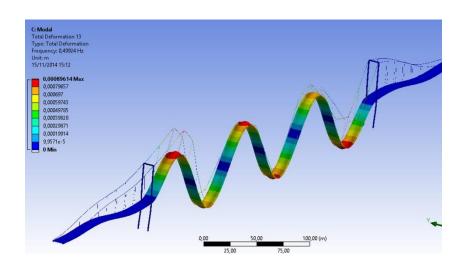
> Frequências naturais: Taxa de vibração dos Materiais. Todos materiais (átomos) vibram!

➤ Por exemplo, no estudo de VIBRAÇÕES:







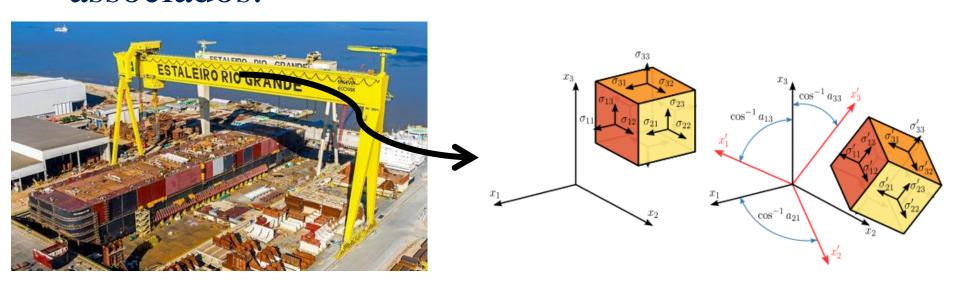


Quando a Frequência natural é atingida = RESSONÂNCIA. Aumentando a amplitude!

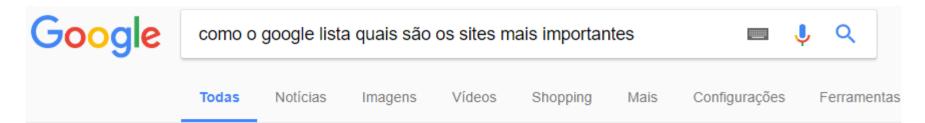
➤ Ponte de Tacoma (Washington, Estados Unidos), 1940.

https://www.youtube.com/watch?v=mfQk6ac4res

Na mecânica dos materiais, os esforços principais são os autovalores da matriz de tensões, e as direções principais são as direções dos autovetores associados.



Como o Google lista quais são os sites mais importantes?
 (Algoritmo próprio: Autovalor e Autovetor)



Aproximadamente 11.500.000 resultados (0,57 segundos)

1º ------

Os 50 sites mais acessados do Brasil e do mundo | EXAME

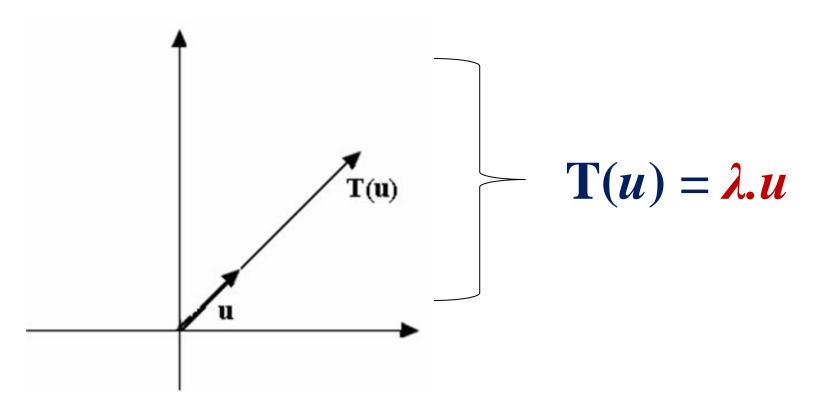
https://exame.abril.com.br/.../os-50-sites-mais-acessados-do-brasil-e-do-mundo/ ▼ 20 de jun de 2017 - São Paulo — No Brasil e no mundo, o Google ainda reina como site mais acessado da internet, de acordo com a lista de sites Alexa, feita pela Amazon. O buscador, que funciona como um verdadeiro índice da internet, ocupa as três primeiras posições do ranking brasileiro—sendo que a segunda fica com ...

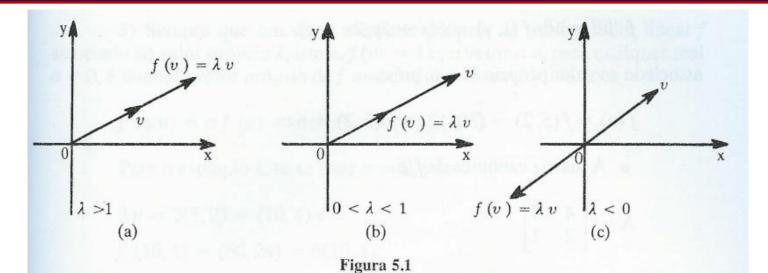
2º **⇒**

Os 50 sites mais acessados do Brasil, segundo o site Alexa - InfoMoney

www.infomoney.com.br/minhas.../sites-mais-acessados-brasil-segundo-site-alexa ▼
13 de set de 2013 - Brasil é o país **mais** caro para se comprar um iPhone; veja **lista** completa · Após revelação dos novos iPhones, Nokia provoca Apple no Twitter · De criança para criança: garota de 9 anos impressiona ao criar rede social. **SÃO** PAULO – O **site** do **Google** Brasil é a página **mais** acessada pelos brasileiros, ...

Além da importância física, os autovalores e autovetores de uma matriz podem representar uma matriz em forma vetorial, simplificando o problema.





A Figura 5.1.d mostra um vetor $v \in \mathbb{R}^2$ que não é vetor próprio de um operador f.

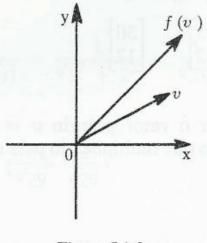
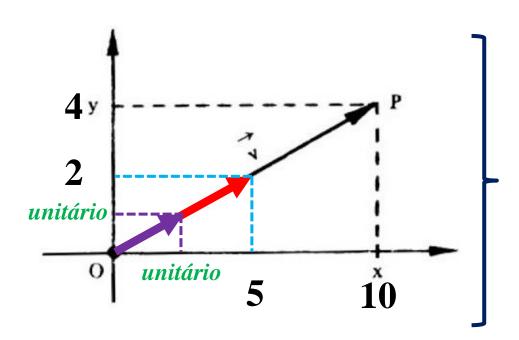


Figura 5.1.d

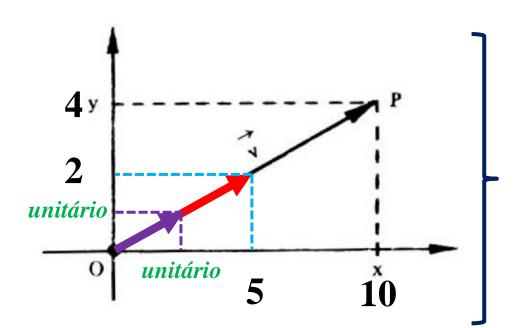
$$A v = \begin{bmatrix} 4 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \lambda v = 6 \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 30 \\ 12 \end{bmatrix}$$

➤ O vetor (10; 4) é também autovetor da matriz A, associado ao mesmo autovalor λ =6!



$$A v = \begin{bmatrix} 4 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \lambda v = 6 \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 30 \\ 12 \end{bmatrix}$$

 \triangleright O vetor (10; 4) é também autovetor da matriz A, associado ao mesmo autovalor λ =6!



Por isso, é comum associar o autovetor a seu **vetor unitário!**

Se se desejasse saber qual o vetor próprio unitário μ associado a $\lambda=6$, bastaria fazer

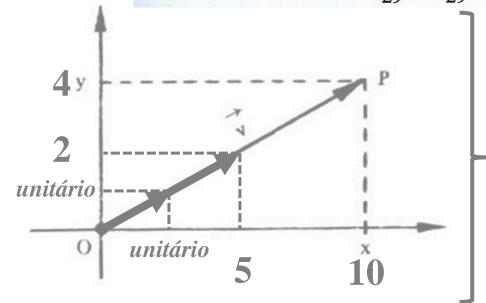
$$\alpha = \frac{1}{|v|} = \frac{1}{|(5,2)|} = \frac{1}{\sqrt{5^2 + 2^2}} = \frac{1}{\sqrt{29}}$$

obtendo-se

$$\mu = \frac{1}{\sqrt{29}}(5,2) = (\frac{5}{\sqrt{29}}, \frac{2}{\sqrt{29}})$$

Assim,

$$f(\mu) = 6\mu = 6\left(\frac{5}{\sqrt{29}}, \frac{2}{\sqrt{29}}\right) = \left(\frac{30}{\sqrt{29}}, \frac{12}{\sqrt{29}}\right)$$



Por isso, é comum associar o autovetor a seu **vetor unitário**!

> [I]=matriz identidade com as mesmas dimensões de [A]:

$$A\vec{v} = \lambda \vec{v}$$

$$A\vec{v} = \lambda I\vec{v}$$

$$A\vec{v} - \lambda I\vec{v} = \vec{0}$$

$$(A - \lambda I)\vec{v} = \vec{0}$$

 \triangleright Por exemplo, considerando uma matriz A(2x2):

$$(\mathbf{A} - \lambda \mathbf{I}) v = 0$$

Fazendo v = (x, y), a equação (1) fica:

$$\begin{pmatrix}
\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

ou

$$\begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

> Observações:

$$[a - \lambda I][u] = 0$$

Se a matriz $[a - \lambda I]$ desse sistema homogêneo não possuir inversa, à solução será trivial [u] = 0.

> Observações:

$$[a - \lambda I][u] = 0$$

Se a matriz $[a - \lambda I]$ desse sistema homogêneo possuir inversa, à solução será trivial [u] = 0.

Por outro lado, se $[a - \lambda I]$ não possuir inversa (*Determinante de [a - \lambda I] NULO*), então é possível encontrar uma solução não-trivial para [u].

$$\det[a - \lambda I] = 0$$

Determinação: autovalores e autovetores

OBSERVAÇÕES:

- Os autovalores de uma matriz quadrada [A] são as raízes da correspondente equação característica.
- A matriz [A] tem pelo menos um autovalor e no máximo
 n autovalores numericamente diferentes.

Determinação: autovalores e autovetores

OBSERVAÇÕES:

Solutiones devem ser determinados primeiro. Com os autovalores determinados, os correspondentes autovetores são obtidos resolvendo o sistema homogêneo de equações lineares, por exemplo, para A(2x2):

$$\begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Mostre que 2 é autovalor de:

$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & 1 \\ 1 & -1 & 3 \end{bmatrix}$$

Mostre que 2 é autovalor de:

$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & 1 \\ 1 & -1 & 3 \end{bmatrix}$$

$$\det(A - 2I) = 0$$

$$\begin{vmatrix} 3-2 & -1 & 1 \\ -1 & 5-2 & 1 \\ 1 & -1 & 3-2 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & -1 & 1 \\ -1 & 3 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 0$$

Determinar os autovalores e autovetores da seguinte Matriz:

$$A = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$$

a) Determinação dos autovalores:

$$A \cdot x = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$D(\lambda) = \det(A - \lambda I) = \begin{vmatrix} -5 - \lambda & 2 \\ 2 & -2 - \lambda \end{vmatrix} = 0$$

$$(-5-\lambda)(-2-\lambda)-4=0$$
$$\lambda^2 + 7\lambda + 6 = 0$$
$$\lambda_1 = -1$$
$$\lambda_2 = -6$$

b) Determinação dos autovetores:

$$\lambda = \lambda_1 = -1$$

$$\begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solução: Para x_1 qualquer, $x_2 = 2x_1$. Por exemplo, $x_1 = 1$, então $x_2 = 2$. Um autovetor de A correspondente a $\lambda_1 = -1$ é:

$$x_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

b) Determinação dos autovetores:

$$\lambda = \lambda_1 = -6$$

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solução: Para x_1 qualquer, x_2 = -0.5 * x_1 . Por exemplo, x_1 = 2, então x_2 = -1. Um autovetor de A correspondente a λ_1 = -6 é:

$$x_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

linear

1) Determinar os valores próprios e os vetores próprios do operador

$$f: \mathbb{R}^2 \to \mathbb{R}^2, f(x, y) = (4x + 5y, 2x + y)$$

Solução

I) A matriz canônica do operador f é

$$A = \begin{bmatrix} 4 & 5 \\ 2 & 1 \end{bmatrix}$$

e, portanto, a equação característica de f é

$$\det (A - \lambda I) = \begin{vmatrix} 4 - \lambda & 5 \\ 2 & 1 - \lambda \end{vmatrix}$$

isto é,

$$(4 - \lambda) (1 - \lambda) - 10 = 0$$

 $\lambda^2 - 5\lambda + 6 = 0$,

equação do 2° grau cujas raízes são $\lambda_1 = 6$ e $\lambda_2 = -1$.

II) O sistema homogêneo que permite a determinação dos vetores próprios é $(A - \lambda I) v = 0$. Considerando $v = \begin{bmatrix} x \\ y \end{bmatrix}$, o sistema fica:

$$\begin{bmatrix} 4 - \lambda & 5 \\ 2 & 1 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \tag{1}$$

i) Substituindo, em (1), λ por 6, obtém-se o sistema linear homogêneo cuja solução é constituída por todos os vetores próprios associados ao valor próprio $\lambda_1 = 6$:

$$\begin{bmatrix} 4 - 6 & 5 \\ 2 & 1 - 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

ou

$$\begin{bmatrix} -2 & 5 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

ou, ainda

$$\begin{cases} -2x + 5y = 0 \\ 2x - 5y = 0 \end{cases}$$

Esse sistema admite uma infinidade de soluções próprias:

$$y = \frac{2}{5}x$$

e, portanto, os vetores do tipo $v_1 = (x, \frac{2}{5}x)$ ou $v_1 = x(1, \frac{2}{5})$, $x \ne 0$, ou, ainda, $v_1 = x(5, 2)$ são os vetores próprios associados ao valor próprio $\lambda_1 = 6$.

ii) Substituindo, em (1), λ por -1, obtém-se o sistema linear homogêneo cuja solução é constituída por todos os vetores próprios associados ao valor próprio $\lambda_2 = -1$:

$$\begin{bmatrix} 4+1 & 5 \\ 2 & 1+1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

ou

$$\begin{bmatrix} 5 & 5 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

ou, ainda

$$\begin{cases} 5x + 5y = 0 \\ 2x + 2y = 0 \end{cases}$$

Esse sistema admite uma infinidade de soluções próprias:

$$y = -x$$

e, portanto, os vetores do tipo $v_2 = (x, -x)$ ou $v_2 = x (1, -1)$, $x \ne 0$, são os vetores próprios associados ao valor próprio $\lambda_2 = -1$.

3) Determinar os valores próprios e os vetores próprios da matriz

$$A = \begin{bmatrix} -16 & 10 \\ -16 & 8 \end{bmatrix}$$

I) A equação característica de A é

$$\det (A - \lambda I) = \begin{vmatrix} -16 - \lambda & 10 \\ -16 & 8 - \lambda \end{vmatrix} = 0,$$

isto é,

$$(-16 - \lambda) (8 - \lambda) + 160 = 0$$

$$-128 + 16\lambda - 8\lambda + \lambda^2 + 160 = 0$$

$$\lambda^2 + 8\lambda + 32 = 0,$$

equação do 2° grau cujas raízes são $\lambda = -4 \pm 4$ i, isto é, $\lambda_1 = 4 + 4$ i e $\lambda_2 = 4 - 4$ i, e, por conseguinte, a matriz A não possui valores próprios nem vetores próprios.

I) A equação característica de A é

$$\det (A - \lambda I) = \begin{vmatrix} -16 - \lambda & 10 \\ -16 & 8 - \lambda \end{vmatrix} = 0,$$

isto é,

$$(-16 - \lambda) (8 - \lambda) + 160 = 0$$

$$-128 + 16\lambda - 8\lambda + \lambda^2 + 160 = 0$$

$$\lambda^2 + 8\lambda + 32 = 0,$$

equação do 2° grau cujas raízes são $\lambda = -4 \pm 4$ i, isto é, $\lambda_1 = 4 + 4$ i e $\lambda_2 = 4 - 4$ i, e, por conseguinte, a matriz A não possui valores próprios nem vetores próprios.

Se na definição de valor próprio de um operador linear f se admitisse λ qualquer, real ou complexo, se poderia dizer que a matriz A possui valores próprios complexos e, em conseqüência, vetores próprios de componentes complexas. Neste texto se consideram, apenas, valores próprios reais.

2) Calcular os valores próprios e os vetores próprios da transformação linear f representada pela matriz

$$\mathbf{A} = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$$

Solução

I) A equação característica de A é

$$\det (A - \lambda I) = \begin{vmatrix} 7 - \lambda & -2 & 0 \\ -2 & 6 - \lambda & -2 \\ 0 & -2 & 5 - \lambda \end{vmatrix} = 0$$
 (1)

isto é,

$$(7-\lambda)\begin{vmatrix} 6-\lambda & -2 \\ -2 & 5-\lambda \end{vmatrix} - (-2)\begin{vmatrix} -2 & -2 \\ 0 & 5-\lambda \end{vmatrix} + 0\begin{vmatrix} -2 & 6-\lambda \\ 0 & -2 \end{vmatrix} = 0$$

$$(7-\lambda)[(6-\lambda)(5-\lambda)-4] + 2[-2(5-\lambda)+0] + 0 = 0$$

$$(7-\lambda)(6-\lambda)(5-\lambda)-4(7-\lambda)-4(5-\lambda) = 0$$

$$(7-\lambda)(6-\lambda)(5-\lambda)-28 + 4\lambda - 20 + 4\lambda = 0$$

$$(7-\lambda)(6-\lambda)(5-\lambda)-48 + 8\lambda = 0$$

$$(7-\lambda)(6-\lambda)(5-\lambda)-8(6-\lambda) = 0$$

$$(6-\lambda)[(7-\lambda)(5-\lambda)-8(6-\lambda) = 0$$

$$(6-\lambda)[(7-\lambda)(5-\lambda)-8] = 0$$

$$(6-\lambda)[(7-\lambda)(5-\lambda)-8] = 0$$

$$(6-\lambda)(\lambda^2-12\lambda+27)=0$$

$$(6-\lambda)(\lambda-3)(\lambda-9)=0$$

As raízes dessa equação são $\lambda_1 = 3$, $\lambda_2 = 6$ e $\lambda_3 = 9$ e, por conseguinte, são os valores próprios de f, ou da matriz A.

A equação (1) pode ser resolvida, de modo geral, pelo processo apresentado na solução do problema 2, item A.19.1, Apêndice.

II) O sistema homogêneo de equações lineares que permite a determinação dos vetores próprios associados é $(A - \lambda I)v = 0$. Considerando

$$v = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

o sistema fica

$$\begin{bmatrix} 7 - \lambda & -2 & 0 \\ -2 & 6 - \lambda & -2 \\ 0 & -2 & 5 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (2)

i) Substituindo em (2) λ por 3, obtém-se o sistema

$$\begin{bmatrix} 4 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

isto é,

$$\begin{cases}
4x - 2y + 0z = 0 \\
-2x + 3y - 2z = 0 \\
0x - 2y + 2z = 0
\end{cases}$$

Esse sistema admite uma infinidade de soluções próprias: y = z = 2x e, portanto, os vetores $v_1 = (x, 2x, 2x) = x(1, 2, 2), x \neq 0$, são os vetores próprios associados ao valor próprio $\lambda_1 = 3$.

ii) Substituindo em (2) λ por 6, obtém-se o sistema

$$\begin{bmatrix} 1 & -2 & 0 \\ -2 & 0 & -2 \\ 0 & -2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

isto é,

$$\begin{cases}
1x - 2y + 0z = 0 \\
-2x + 0y - 2z = 0 \\
0x - 2y - 1z = 0
\end{cases}$$

Esse sistema admite uma infinidade de soluções próprias: $y = \frac{1}{2}x$ e z = -x. Portanto, os vetores $v_2 = (x, \frac{1}{2}x, -x) = x(1, \frac{1}{2}, -1)$ ou $v_2 = x(2,1-2), x \neq 0$, são os vetores próprios associados ao valor próprio $\lambda_2 = 6$

iii) Substituindo em (2) λ por 9, obtém-se o sistema

$$\begin{bmatrix} -2 & -2 & 0 \\ -2 & -3 & -2 \\ 0 & -2 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

isto é, $\begin{cases}
-2x - 2y + 0z = 0 \\
-2x - 3y - 2z = 0 \\
0x - 2y - 4z = 0
\end{cases}$

Esse sistema admite uma infinidade de soluções próprias: y = -x e $z = \frac{1}{2}x$. Portanto, os vetores $v_3 = (x, -x, \frac{1}{2}x) = x(1, -1, \frac{1}{2})$ ou $v_3 = x(2, -2, 1)$,

 $x \neq 0$, são os vetores próprios associados ao valor próprio $\lambda_3 = 9$.

1. Matriz diagonal: É uma matriz em que todos os números fora da diagonal principal (a linha que vai do canto superior esquerdo ao inferior direito) são zeros. Exemplo:

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

- 2. Diagonalizável: Uma matriz é diagonalizável se conseguimos "trocar a base" (usar os autovalores e autovetores) e escrevê-la em uma forma mais simples, que é a matriz diagonal. Isso facilita muitos cálculos, como elevações a potências ou resolução de sistemas.
- 3. **Por que isso é útil?** É como pegar algo complicado e transformar em algo muito mais fácil de lidar. Trabalhar com uma matriz diagonal é bem mais simples do que com a original.
- 4. **Nem todas as matrizes são diagonalizáveis!** Para ser diagonalizável, a matriz precisa ter características específicas, como um número suficiente de **autovetores independentes**.

➤ A matriz quadrada [A] é diagonalizável se existe uma matriz inversível [P] tal que:

```
[D] = [P]^{-1}[A][P] seja matriz diagonal.
```

Diz-se, nesse caso, que a matriz [*P*] diagonaliza [*A*]. sendo [P] a matriz cujas colunas são os autovetores da matriz [A]

2) Dado o operador linear $f: \mathbb{R}^2 \to \mathbb{R}^2$ definido por

$$f(x, y) = (4x + 5y, 2x + y),$$

determinar uma base do \mathbb{R}^2 em relação à qual a matriz de f é diagonal.

Usar os resultados encontrados no exemplo 3!

No problema 1 de 5.2.3, viu-se que os valores próprios de f (ou de A) são $\lambda_1 = 6$ e $\lambda_2 = -1$ e os correspondentes vetores próprios são $v_1 = x$ (5, 2) e $v_2 = x$ (1, -1).

A base em relação à qual a matriz de f é diagonal é $P = \{v_1 = (5, 2), v_2 = (1, -1)\}$, base formada pelos vetores próprios de f e, portanto, a matriz

$$P = \begin{bmatrix} 5 & 1 \\ 2 & -1 \end{bmatrix},$$

diagonaliza A.

$$P^{-1}AP = \begin{bmatrix} \frac{1}{7} & \frac{1}{7} \\ \frac{2}{7} & -\frac{5}{7} \end{bmatrix} \begin{bmatrix} 4 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & -1 \end{bmatrix} = D$$

MATRIZ SIMÉTRICA DIAGONALIZÁVEL

> Se a matriz for simétrica, teremos:

$$[D] = [P^t][A][P]$$

sendo [P] a matriz cujas colunas são os autovetores da matriz [A]

Determinação: autovalores e autovetores

OBSERVAÇÕES:

- A menos que a matriz [A] seja de ordem baixa ou que tenha muitos elementos iguais a zero, a expansão direta do determinante para a determinação do polinômio característico é ineficiente.
- Assim, SOLUÇÕES NUMÉRICAS devem ser utilizadas no cálculo do determinante (Cálculo Numérico).

Problemas Teóricos:

Mostre que os autovalores da seguinte matriz são 10, $\sqrt{2}$, $-\sqrt{2}$.

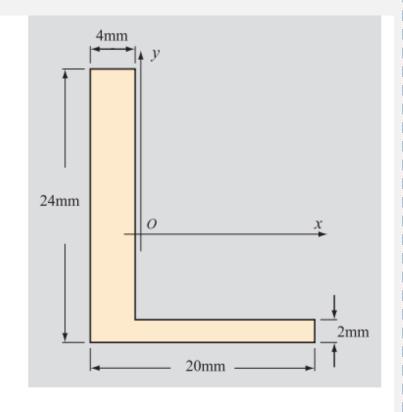
$$\begin{bmatrix}
10 & 0 & 0 \\
1 & -3 & -7 \\
0 & 1 & 3
\end{bmatrix}$$

Problema de Aplicação Prática:

Os momentos de inércia I_x , I_y e o produto de inércia I_{xy} da área lateral mostrada na figura são $I_x = 7523 \text{ mm}^4$, $I_y = 3210 \text{ mm}^4$ e $I_{xy} = -2640 \text{ mm}^4$.

Os momentos de inércia principais são os autovalores da matriz $\begin{bmatrix} 7523 & -2640 \\ -2640 & 3210 \end{bmatrix}$ e os

eixos principais estão na direção dos autovetores. Determine os momentos de inércia principais resolvendo a equação característi-



ca. Determine a orientação dos eixos de inércia principais (vetores unitários na direção dos autovetores).

Problemas Teóricos:

Nos problemas 1 a 3, verificar, utilizando a definição, se os vetores dados são vetores próprios das correspondentes matrizes:

1)
$$v = (-2,1) e A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$

2)
$$v = (1, 1, 2) e A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 2 & 3 \end{bmatrix}$$

3)
$$v = (-2, 1, 3) e A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Problemas Teóricos:

Nos problemas 4 a 10, determinar os valores próprios e os vetores próprios das transformações lineares dadas em cada um deles.

- 4) $f : \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x + 2y, -x + 4y)
- 5) $f : \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (2x + 2y, x + 3y)
- 6) $f : \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (5x y, x + 3y)
- 7) $f : \mathbb{R}^2 \to \mathbb{R}^2, f(x, y) = (y, -x)$
- 8) $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x, y, z) = (x + y + z, 2y + z, 2y + 3z)
- 9) $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x, y, z) = (x, -2x y, 2x + y + 2z)
- 10) $f : \mathbb{R}^3 \to \mathbb{R}^3, f(x, y, z) = (x + y, y, z)$

Problemas Teóricos:

Nos problemas 11 a 18, calcular os valores próprios e os correspondentes vetores próprios das matrizes dadas em cada um deles.

11)
$$A = \begin{bmatrix} 1 & 3 \\ -1 & 5 \end{bmatrix}$$

$$12) A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$

13)
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 2 \\ 1 & 1 & 2 \end{bmatrix}$$

14)
$$A = \begin{bmatrix} 3 & -1 & -3 \\ 0 & 2 & -3 \\ 0 & 0 & -1 \end{bmatrix}$$

15)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & -2 \\ 0 & 1 & -1 \end{bmatrix}$$
 16) $A = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 4 & 1 \\ 1 & 2 & 3 \end{bmatrix}$

16)
$$A = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 4 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

17)
$$A = \begin{bmatrix} 3 & 3 & -2 \\ 0 & -1 & 0 \\ 8 & 6 & -5 \end{bmatrix}$$

17)
$$A = \begin{bmatrix} 3 & 3 & -2 \\ 0 & -1 & 0 \\ 8 & 6 & -5 \end{bmatrix}$$
 18) $A = \begin{bmatrix} 0 & 0 & 2 \\ 0 & -1 & 0 \\ 2 & 0 & 0 \end{bmatrix}$

Problemas Teóricos:

Nos problemas 19 a 26, verificar, em cada um deles, se a matriz A é diagonizável. Caso seja, determinar uma matriz P que diagonaliza A e calcular P-1 A P.

$$19) A = \begin{bmatrix} 2 & 4 \\ 3 & 1 \end{bmatrix}$$

$$20) A = \begin{bmatrix} 9 & 1 \\ 4 & 6 \end{bmatrix}$$

$$21) A = \begin{bmatrix} 5 & -1 \\ 1 & 3 \end{bmatrix}$$

$$22) A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 3 & 1 \\ 0 & 2 & 2 \end{bmatrix}$$

23)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 3 & -1 \\ 0 & -4 & 3 \end{bmatrix}$$

$$24) A = \begin{vmatrix} 2 & 3 & -1 \\ 0 & 1 & -4 \\ 0 & 0 & 3 \end{vmatrix}$$

25)
$$A = \begin{bmatrix} 1 & -2 & -2 \\ 0 & 1 & 0 \\ 0 & 2 & 3 \end{bmatrix}$$

26)
$$A = \begin{bmatrix} 3 & 0 & -2 \\ -5 & 1 & 5 \\ 2 & 0 & -1 \end{bmatrix}$$

Problemas Teóricos:

Nos problemas 28 a 31, para cada uma das matrizes simétricas A, determinar uma matriz ortogonal P para a qual Pt A P seja diagonal.

$$28) A = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$

$$29) A = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix}$$

30)
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

30)
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 31) $A = \begin{bmatrix} 7 & -2 & -2 \\ -2 & 1 & 4 \\ -2 & 4 & 1 \end{bmatrix}$

5.6.1 - Respostas dos Problemas Propostos

- 1) Sim
- 2) Sim
- 3) Não
- 4) $\lambda_1 = 3$, $v_1 = y(1, 1)$; $\lambda_2 = 2$, $v_2 = y(2, 1)$
- 5) $\lambda_1 = 1$, $\nu_1 = y(-2, 1)$; $\lambda_2 = 4$, $\nu_2 = x(1, 1)$
- 6) $\lambda_1 = \lambda_2 = 4, v = x(1, 1)$
- 7) Não existem
- 8) $\lambda_1 = \lambda_2 = 1, v = (x, y, -y); \lambda_3 = 4, v_3 = x (1, 1, 2)$
- 9) $\lambda_1 = 1, v_1 = z(3, -3, 1); \lambda_2 = -1, v_2 = z(0, -3, 1); \lambda_3 = 2, v_3 = z(0, 0, 1)$
- 10) $\lambda_1 = \lambda_2 = \lambda_3 = 1$, v = (x, 0, z), x e z não simultaneamente nulos

11)
$$\lambda_1 = 2, v_1 = y(3, 1); \lambda_2 = 4, v_2 = y(1, 1)$$

12)
$$\lambda_1 = 1, v_1 = y(-1, 1); \lambda_2 = 5, v_2 = x(1, 3)$$

13)
$$\lambda_1 = 1, v_1 = x (1, 0, -1); \lambda_2 = 2, v_2 = z (-2, 2, 1); \lambda_3 = 3, v_3 = x (1, -2, -1)$$

14)
$$\lambda_1 = -1$$
, $v_1 = x(1, 1, 1)$; $\lambda_2 = 2$, $v_2 = x(1, 1, 0)$; $\lambda_3 = 3$, $v_3 = x(1, 0, 0)$

15)
$$\lambda_1 = 1, v_1 = z(2, 2, 1); \lambda_2 e \lambda_3 \text{ imaginários}$$

16)
$$\lambda_1 = \lambda_2 = 2, v = (x, y, -x - 2y); \lambda_3 = 6, v_3 = x (1, 1, 1)$$

17)
$$\lambda_1 = \lambda_2 = \lambda_3 = -1, v = (x, y, 2x + \frac{3}{2}y)$$

18)
$$\lambda_1 = 2, v_1 = x (1, 0, 1); \lambda_2 = -1, v_2 = y (0, 1, 0); \lambda_3 = -2, v_3 = x (1, 0, -1)$$

19)
$$P = \begin{bmatrix} 1 & 4 \\ -1 & 3 \end{bmatrix}, \qquad P^{-1}AP = \begin{bmatrix} -2 & 0 \\ 0 & 5 \end{bmatrix}$$

20)
$$P = \begin{bmatrix} 1 & 1 \\ 1 & -4 \end{bmatrix}$$
, $P^{-1}AP = \begin{bmatrix} 10 & 0 \\ 0 & 5 \end{bmatrix}$

21) Não é diagonalizável.

22)
$$P = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 1 & -2 \end{bmatrix}$$
 $P^{-1}AP = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

23) Não é diagonalizável.

24)
$$P = \begin{bmatrix} -3 & 1 & -7 \\ 1 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix}, \quad P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

25)
$$P = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$
 $P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

26) Não é diagonalizável.

b)
$$\begin{bmatrix} 9 & 0 \\ 0 & -1 \end{bmatrix}$$

28)
$$P = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

29)
$$P = \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$$

$$\begin{vmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
30) P = 0 & 0 & 1 \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0
\end{vmatrix}$$

31)
$$P = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

• (

CONTINUA na Parte 2